Rayat Shikshan Sanstha's

Annasaheb Awate Arts, Commerce & Hutatma Babu Genu Science College Manchar, Tal. Ambegaon, Dist.Pune 410503 Programme: B.Sc., Electronic Science

Course Outcomes

CONo.	Course Outcomes After completing B.Sc. degree programme, the students will be able to:
Class: FY	BSc: SEM I
	Paper I: ELS-101T Fundamentals of Analog Electronics
CO 1	Identify basic Component and systems used in analog circuits
CO 2	Explain fundamental laws and elements of electrical circuits
CO 3	Understand DC circuit theorems and networks
CO 4	Understand AC circuits and related terminologies with examples
	ELS-102-PPractical Course-I
CO 1	Understand how to identify electronic components
CO 2	Understand DC circuit theorems and networks
CO 3	Understand AC circuits and related terminologies with examples
OE -101- ELSBasics of Computer Hardware	
CO 1	Understand computer system and its operations.
CO 2	Enhance the knowledge of different devices used in the computer with respect to
	their applications
CO 3	Understand the use of system software and applications software.
CO 4	Able to troubleshoot the computer hardware or software problems.
	SEC 101 ELElectronic Circuit Building and Testing
CO 1	Understand how to identify, use and construct electronic circuits with circuit
	elements
CO 2	Develop skill of assembling simple electronic circuits
CO 3	Test assembled electronic circuit
Class: FY	BSc : SEM II
ELS-151-TFundamentals of Digital Electronics	
CO 1	Solve problems based on inter-conversion of number systems.
CO 2	Understand different logic gates
CO 3	Understand the working principle and application of different arithmetic circuits
CO 4	Understand types of digital circuits.

AAC_DOES_Course Outcomes(Cos)

ELS-152-PPractical Course-II	
CO 1	Understand the different types of logic gates.
CO 2	Understand the difference between sequential and combinational circuits.
CO 3	Understand the different modes of shift registers.
CO 4	Understand the various types of code converters
	OE-151-ELSBasics of Computer Hardware Lab
CO 1	Identify computer hardware parts and connect peripherals
CO 2	Describe function of input and output peripheral devices.
CO 3	Understand the use of different types of storage devises
CO 4	Able to troubleshoot the computer hardware problems.
	SEC-151-ELSPCB Designing and Fabrication
CO 1	To prepare PCB layout for given circuit
CO 2	Use software for creating layout
CO 3	Make PCB and solder components on PCB

Head
Dept. of Electronice Science
A. A. College, Manchar

Rayat Shikshan Sanstha's

Annasaheb Awate Arts, Commerce & Hutatma Babu Genu Science College Manchar, Tal. Ambegaon, Dist. Pune 410503 Programme: B.Sc., Electronic Science Course Outcomes

Class:SYBSc: Sem:III ELS-201-MJ:Analog Circuit Design CO 1 Recall and explain the general classification of amplifiers. CO 2 Analyze and perform AC and DC analysis of amplifiers. CO 3 Identify and compare different multistage amplifier types. CO 4 Explain the characteristics of Op-Amp. CO 5 Design and analyze basic Op-Amp circuits. ELS-202-MJ:Digital Circuit Design CO 1 Design and analyze combinational circuits like code converters, adders and encoders. CO 2 Design synchronous counters using JK and T Flip-Flops. CO 3 Study and explain the features of ICs 7476 and 7490 for counters. CO 4 Describe the fundamental logic families such as TTL, CMOS, and ECL, and compare their electrical and performance characteristics. CO 5 Interface and program switches, keypads, and thumbwheel switches. CO 6 Apply knowledge of PLDs in designing digital systems for real-world applications. ELS-203-MJP: Practical Course-III CO 1 Design and analyze different types of amplifiers. CO 2 Study the operation of integrator and differentiator circuits. CO 3 Design Oscillators and Multivibrators. CO 4 Design a Butterworth low-pass filter and study its frequency response. CO 5 Design and implement counter for given sequence ELS-221-VSC: Circuit Simulation-I CO 1 Basic laws of Analog circuit design. Add DOES Course Outcomes(Cos)	CO No.	Course Outcomes
ELS-201-MJ:Analog Circuit Design CO 1 Recall and explain the general classification of amplifiers. CO 2 Analyze and perform AC and DC analysis of amplifiers. CO 3 Identify and compare different multistage amplifier types. CO 4 Explain the characteristics of Op-Amp. Design and analyze basic Op-Amp circuits. ELS-202-MJ:Digital Circuit Design CO 1 Design and analyze combinational circuits like code converters, adders and encoders. CO 2 Design synchronous counters using JK and T Flip-Flops. CO 3 Study and explain the features of ICs 7476 and 7490 for counters. CO 4 Describe the fundamental logic families such as TTL, CMOS, and ECL, and compare their electrical and performance characteristics. CO 5 Interface and program switches, keypads, and thumbwheel switches. CO 6 Apply knowledge of PLDs in designing digital systems for real-world applications. ELS-203-MJP: Practical Course-III CO 1 Design and analyze different types of amplifiers. CO 2 Study the operation of integrator and differentiator circuits. CO 3 Design Oscillators and Multivibrators. CO 4 Design a Butterworth low-pass filter and study its frequency response. Design a 3-bit synchronous up/down counter using JK Flip-Flops. CO 6 Design and implement counter for given sequence ELS-221-VSC: Circuit Simulation-I CO 1 Basic laws of Analog circuit design.	CO 110.	After completing B.Sc. degree programme, the students will be able to:
CO 1 Recall and explain the general classification of amplifiers. CO 2 Analyze and perform AC and DC analysis of amplifiers. CO 3 Identify and compare different multistage amplifier types. CO 4 Explain the characteristics of Op-Amp. CO 5 Design and analyze basic Op-Amp circuits. ELS-202-MJ:Digital Circuit Design CO 1 Design and analyze combinational circuits like code converters, adders and encoders. CO 2 Design synchronous counters using JK and T Flip-Flops. CO 3 Study and explain the features of ICs 7476 and 7490 for counters. CO 4 Describe the fundamental logic families such as TTL, CMOS, and ECL, and compare their electrical and performance characteristics. CO 5 Interface and program switches, keypads, and thumbwheel switches. CO 6 Apply knowledge of PLDs in designing digital systems for real-world applications. ELS-203-MJP: Practical Course-III CO 1 Design and analyze different types of amplifiers. CO 2 Study the operation of integrator and differentiator circuits. CO 3 Design Oscillators and Multivibrators. CO 4 Design a Butterworth low-pass filter and study its frequency response. Design a 3-bit synchronous up/down counter using JK Flip-Flops. CO 6 Design and implement counter for given sequence ELS-221-VSC: Circuit Simulation-I CO 1 Basic laws of Analog circuit design.	Class:SY	BSc : Sem:III
CO 2 Analyze and perform AC and DC analysis of amplifiers. CO 3 Identify and compare different multistage amplifier types. CO 4 Explain the characteristics of Op-Amp. CO 5 Design and analyze basic Op-Amp circuits. ELS-202-MJ:Digital Circuit Design CO 1 Design and analyze combinational circuits like code converters, adders and encoders. CO 2 Design synchronous counters using JK and T Flip-Flops. CO 3 Study and explain the features of ICs 7476 and 7490 for counters. CO 4 Describe the fundamental logic families such as TTL, CMOS, and ECL, and compare their electrical and performance characteristics. CO 5 Interface and program switches, keypads, and thumbwheel switches. CO 6 Apply knowledge of PLDs in designing digital systems for real-world applications. ELS-203-MJP: Practical Course-III CO 1 Design and analyze different types of amplifiers. CO 2 Study the operation of integrator and differentiator circuits. CO 3 Design Oscillators and Multivibrators. CO 4 Design a Butterworth low-pass filter and study its frequency response. CO 5 Design a 3-bit synchronous up/down counter using JK Flip-Flops. CO 6 Design and implement counter for given sequence ELS-221-VSC: Circuit Simulation-I CO 1 Basic laws of Analog circuit design.		ELS-201-MJ:Analog Circuit Design
CO 3 Identify and compare different multistage amplifier types. CO 4 Explain the characteristics of Op-Amp. CO 5 Design and analyze basic Op-Amp circuits. ELS-202-MJ:Digital Circuit Design CO 1 Design and analyze combinational circuits like code converters, adders and encoders. CO 2 Design synchronous counters using JK and T Flip-Flops. CO 3 Study and explain the features of ICs 7476 and 7490 for counters. CO 4 Describe the fundamental logic families such as TTL, CMOS, and ECL, and compare their electrical and performance characteristics. CO 5 Interface and program switches, keypads, and thumbwheel switches. CO 6 Apply knowledge of PLDs in designing digital systems for real-world applications. ELS-203-MJP: Practical Course-III CO 1 Design and analyze different types of amplifiers. CO 2 Study the operation of integrator and differentiator circuits. CO 3 Design Oscillators and Multivibrators. CO 4 Design a Butterworth low-pass filter and study its frequency response. CO 5 Design a 3-bit synchronous up/down counter using JK Flip-Flops. CO 6 Design and implement counter for given sequence ELS-221-VSC: Circuit Simulation-I CO 1 Basic laws of Analog circuit design.	CO 1	Recall and explain the general classification of amplifiers.
CO 4 Explain the characteristics of Op-Amp. CO 5 Design and analyze basic Op-Amp circuits. ELS-202-MJ:Digital Circuit Design CO 1 Design and analyze combinational circuits like code converters, adders and encoders. CO 2 Design synchronous counters using JK and T Flip-Flops. CO 3 Study and explain the features of ICs 7476 and 7490 for counters. CO 4 Describe the fundamental logic families such as TTL, CMOS, and ECL, and compare their electrical and performance characteristics. CO 5 Interface and program switches, keypads, and thumbwheel switches. CO 6 Apply knowledge of PLDs in designing digital systems for real-world applications. ELS-203-MJP: Practical Course-III CO 1 Design and analyze different types of amplifiers. CO 2 Study the operation of integrator and differentiator circuits. CO 3 Design Oscillators and Multivibrators. CO 4 Design a Butterworth low-pass filter and study its frequency response. CO 5 Design a 3-bit synchronous up/down counter using JK Flip-Flops. CO 6 Design and implement counter for given sequence ELS-221-VSC: Circuit Simulation-I	CO 2	Analyze and perform AC and DC analysis of amplifiers.
CO 5 Design and analyze basic Op-Amp circuits. ELS-202-MJ:Digital Circuit Design CO 1 Design and analyze combinational circuits like code converters, adders and encoders. CO 2 Design synchronous counters using JK and T Flip-Flops. CO 3 Study and explain the features of ICs 7476 and 7490 for counters. CO 4 Describe the fundamental logic families such as TTL, CMOS, and ECL, and compare their electrical and performance characteristics. CO 5 Interface and program switches, keypads, and thumbwheel switches. CO 6 Apply knowledge of PLDs in designing digital systems for real-world applications. ELS-203-MJP: Practical Course-III CO 1 Design and analyze different types of amplifiers. CO 2 Study the operation of integrator and differentiator circuits. CO 3 Design Oscillators and Multivibrators. CO 4 Design a Butterworth low-pass filter and study its frequency response. CO 5 Design a 3-bit synchronous up/down counter using JK Flip-Flops. CO 6 Design and implement counter for given sequence ELS-221-VSC: Circuit Simulation-I	CO 3	Identify and compare different multistage amplifier types.
ELS-202-MJ:Digital Circuit Design CO 1 Design and analyze combinational circuits like code converters, adders and encoders. CO 2 Design synchronous counters using JK and T Flip-Flops. CO 3 Study and explain the features of ICs 7476 and 7490 for counters. CO 4 Describe the fundamental logic families such as TTL, CMOS, and ECL, and compare their electrical and performance characteristics. CO 5 Interface and program switches, keypads, and thumbwheel switches. CO 6 Apply knowledge of PLDs in designing digital systems for real-world applications. ELS-203-MJP: Practical Course-III CO 1 Design and analyze different types of amplifiers. CO 2 Study the operation of integrator and differentiator circuits. CO 3 Design Oscillators and Multivibrators. CO 4 Design a Butterworth low-pass filter and study its frequency response. CO 5 Design and implement counter for given sequence ELS-221-VSC: Circuit Simulation-I CO 1 Basic laws of Analog circuit design.	CO 4	Explain the characteristics of Op-Amp.
CO 1 Design and analyze combinational circuits like code converters, adders and encoders. CO 2 Design synchronous counters using JK and T Flip-Flops. CO 3 Study and explain the features of ICs 7476 and 7490 for counters. CO 4 Describe the fundamental logic families such as TTL, CMOS, and ECL, and compare their electrical and performance characteristics. CO 5 Interface and program switches, keypads, and thumbwheel switches. CO 6 Apply knowledge of PLDs in designing digital systems for real-world applications. ELS-203-MJP: Practical Course-III CO 1 Design and analyze different types of amplifiers. CO 2 Study the operation of integrator and differentiator circuits. CO 3 Design Oscillators and Multivibrators. CO 4 Design a Butterworth low-pass filter and study its frequency response. CO 5 Design and implement counter for given sequence ELS-221-VSC: Circuit Simulation-I CO 1 Basic laws of Analog circuit design.	CO 5	Design and analyze basic Op-Amp circuits.
encoders. CO 2 Design synchronous counters using JK and T Flip-Flops. CO 3 Study and explain the features of ICs 7476 and 7490 for counters. CO 4 Describe the fundamental logic families such as TTL, CMOS, and ECL, and compare their electrical and performance characteristics. CO 5 Interface and program switches, keypads, and thumbwheel switches. CO 6 Apply knowledge of PLDs in designing digital systems for real-world applications. ELS-203-MJP: Practical Course-III CO 1 Design and analyze different types of amplifiers. CO 2 Study the operation of integrator and differentiator circuits. CO 3 Design Oscillators and Multivibrators. CO 4 Design a Butterworth low-pass filter and study its frequency response. CO 5 Design a 3-bit synchronous up/down counter using JK Flip-Flops. CO 6 Design and implement counter for given sequence ELS-221-VSC: Circuit Simulation-I CO 1 Basic laws of Analog circuit design.		ELS-202-MJ:Digital Circuit Design
CO 3 Study and explain the features of ICs 7476 and 7490 for counters. CO 4 Describe the fundamental logic families such as TTL, CMOS, and ECL, and compare their electrical and performance characteristics. CO 5 Interface and program switches, keypads, and thumbwheel switches. CO 6 Apply knowledge of PLDs in designing digital systems for real-world applications. ELS-203-MJP: Practical Course-III CO 1 Design and analyze different types of amplifiers. CO 2 Study the operation of integrator and differentiator circuits. CO 3 Design Oscillators and Multivibrators. CO 4 Design a Butterworth low-pass filter and study its frequency response. CO 5 Design a 3-bit synchronous up/down counter using JK Flip-Flops. CO 6 Design and implement counter for given sequence ELS-221-VSC: Circuit Simulation-I CO 1 Basic laws of Analog circuit design.	CO 1	·
CO 4 Describe the fundamental logic families such as TTL, CMOS, and ECL, and compare their electrical and performance characteristics. CO 5 Interface and program switches, keypads, and thumbwheel switches. CO 6 Apply knowledge of PLDs in designing digital systems for real-world applications. ELS-203-MJP: Practical Course-III CO 1 Design and analyze different types of amplifiers. CO 2 Study the operation of integrator and differentiator circuits. CO 3 Design Oscillators and Multivibrators. CO 4 Design a Butterworth low-pass filter and study its frequency response. CO 5 Design a 3-bit synchronous up/down counter using JK Flip-Flops. CO 6 Design and implement counter for given sequence ELS-221-VSC: Circuit Simulation-I CO 1 Basic laws of Analog circuit design.	CO 2	Design synchronous counters using JK and T Flip-Flops.
compare their electrical and performance characteristics. CO 5 Interface and program switches, keypads, and thumbwheel switches. CO 6 Apply knowledge of PLDs in designing digital systems for real-world applications. ELS-203-MJP: Practical Course-III CO 1 Design and analyze different types of amplifiers. CO 2 Study the operation of integrator and differentiator circuits. CO 3 Design Oscillators and Multivibrators. CO 4 Design a Butterworth low-pass filter and study its frequency response. CO 5 Design a 3-bit synchronous up/down counter using JK Flip-Flops. CO 6 Design and implement counter for given sequence ELS-221-VSC: Circuit Simulation-I CO 1 Basic laws of Analog circuit design.	CO 3	Study and explain the features of ICs 7476 and 7490 for counters.
CO 6 Apply knowledge of PLDs in designing digital systems for real-world applications. ELS-203-MJP: Practical Course-III CO 1 Design and analyze different types of amplifiers. CO 2 Study the operation of integrator and differentiator circuits. CO 3 Design Oscillators and Multivibrators. CO 4 Design a Butterworth low-pass filter and study its frequency response. CO 5 Design a 3-bit synchronous up/down counter using JK Flip-Flops. CO 6 Design and implement counter for given sequence ELS-221-VSC: Circuit Simulation-I CO 1 Basic laws of Analog circuit design.	CO 4	
ELS-203-MJP: Practical Course-III CO 1 Design and analyze different types of amplifiers. CO 2 Study the operation of integrator and differentiator circuits. CO 3 Design Oscillators and Multivibrators. CO 4 Design a Butterworth low-pass filter and study its frequency response. CO 5 Design a 3-bit synchronous up/down counter using JK Flip-Flops. CO 6 Design and implement counter for given sequence ELS-221-VSC: Circuit Simulation-I CO 1 Basic laws of Analog circuit design.	CO 5	Interface and program switches, keypads, and thumbwheel switches.
CO 1 Design and analyze different types of amplifiers. CO 2 Study the operation of integrator and differentiator circuits. CO 3 Design Oscillators and Multivibrators. CO 4 Design a Butterworth low-pass filter and study its frequency response. CO 5 Design a 3-bit synchronous up/down counter using JK Flip-Flops. CO 6 Design and implement counter for given sequence ELS-221-VSC: Circuit Simulation-I CO 1 Basic laws of Analog circuit design.	CO 6	Apply knowledge of PLDs in designing digital systems for real-world applications.
CO 2 Study the operation of integrator and differentiator circuits. CO 3 Design Oscillators and Multivibrators. CO 4 Design a Butterworth low-pass filter and study its frequency response. CO 5 Design a 3-bit synchronous up/down counter using JK Flip-Flops. CO 6 Design and implement counter for given sequence ELS-221-VSC: Circuit Simulation-I CO 1 Basic laws of Analog circuit design.		ELS-203-MJP: Practical Course-III
CO 3 Design Oscillators and Multivibrators. CO 4 Design a Butterworth low-pass filter and study its frequency response. CO 5 Design a 3-bit synchronous up/down counter using JK Flip-Flops. CO 6 Design and implement counter for given sequence ELS-221-VSC: Circuit Simulation-I CO 1 Basic laws of Analog circuit design.	CO 1	Design and analyze different types of amplifiers.
CO 4 Design a Butterworth low-pass filter and study its frequency response. CO 5 Design a 3-bit synchronous up/down counter using JK Flip-Flops. CO 6 Design and implement counter for given sequence ELS-221-VSC: Circuit Simulation-I CO 1 Basic laws of Analog circuit design.	CO 2	Study the operation of integrator and differentiator circuits.
CO 5 Design a 3-bit synchronous up/down counter using JK Flip-Flops. CO 6 Design and implement counter for given sequence ELS-221-VSC: Circuit Simulation-I CO 1 Basic laws of Analog circuit design.	CO 3	Design Oscillators and Multivibrators.
CO 6 Design and implement counter for given sequence ELS-221-VSC: Circuit Simulation-I CO 1 Basic laws of Analog circuit design.	CO 4	Design a Butterworth low-pass filter and study its frequency response.
ELS-221-VSC: Circuit Simulation-I CO 1 Basic laws of Analog circuit design.	CO 5	Design a 3-bit synchronous up/down counter using JK Flip-Flops.
CO 1 Basic laws of Analog circuit design.	CO 6	Design and implement counter for given sequence
	ELS-221-VSC: Circuit Simulation-I	
AAC_DOES_Course Outcomes(Cos)	CO 1	Basic laws of Analog circuit design.
AAC_DOES_Course Outcomes(Cos)		DOES_Course Outcomes(Cos)

CO 2	Half-wave and full-wave rectifiers.
CO 3	Single-stage common-emitter amplifier.
CO 4	Op-amp amplifiers, Oscillators and Multivibrators
CO 5	4-bit synchronous counter using flip-flops.
CO 6	Interfacing of various peripherals to digital IC
	ELE-241-MN:Instrumentation and Measurement Systems
CO 1	Explain the working of basic instrumentation systems.
CO 2	Identify and use appropriate sensors for measuring physical quantities.
CO 3	Understand signal processing techniques used in instrumentation.
CO 4	Make use of various instruments.
CO 5	Work with the filters, ADCs and DACs.
CO 6	Design simple measurement systems.
E	LE-242-MNP:Lab Course on Instrumentation and Measurement Systems
CO 1	Explain the working of basic instrumentation systems
CO 2	Identify and use appropriate sensors for measuring physical quantities.
CO 3	Understand signal processing techniques used in instrumentation.
CO 4	Operate lab instruments independently.
CO 5	Make use of sensors to construct a measurement system.
CO 6	Design and test simple measurement systems.
Class:SYBSc : Sem:IV	
ELS-251-MJ: Linear Integrated Circuits	
CO 1	Understand the practical design aspects while using Op- mps.

CO 2	Design and analyze basic application circuits using Linear ICs.
CO 3	Learn the specifications Voltage Regulator IC.
CO 4	Gain knowledge of the pin configuration, internal working, and typical applications of positive and negative voltage regulators.
CO 5	a. Describe and evaluate the performance parameters of the LM565.
CO 6	Understand and apply the concept of FSK demodulation using PLL.
	ELS-252-MJ: Microcontroller Programming and Applications
CO 1	Understand the fundamentals of microcontrollers and differentiate between microcontrollers and embedded processors.
CO 2	Comprehend the architecture, features, and pin configuration of the AVR microcontroller and Arduino.
CO 3	Develop basic Arduino programs using C/C++ and implement control structures, operators, and statements.
CO 4	Implement interfacing of Arduino with various input/output devices such as LEDs, buzzers, sensors, and motors.
CO 5	Design and develop simple IoT-based applications and real-world projects using Arduino and external modules
CO 6	Integrate and program modules to build interactive embedded systems and IoT prototypes.
	ELS-253-MJP:Practical Course-IV
CO 1	Design and build half-wave and full-wave precision rectifiers using Op-Amps for high-precision signal rectification.
CO 2	Design, build, and test fixed and adjustable voltage regulators (e.g., IC 78XX, 79XX, LM317, LM337, LM723).
CO 3	Explain how a PLL locks onto an input frequency and generates a stable output at a multiple of the input
CO 4	Interfacing various input/output devices such as push buttons, sensors, LED and Buzzer with Arduino
CO 5	Interface DC motor, Servo motor and steeper motor with Arduino.
CO 6	Explain how IoT systems collect, transmit, and visualize real-time sensor data over the internet
ELS-271-VSC:Circuit Simulation - II	
CO 1	Understand and implement basic digital output control using Arduino to turn devices ON and
CO 2	Acquire and process analog and digital sensor data using Arduino to read and display sensor data.
CO 3	Use conditional statements in Arduino programming to control output devices.
<u> </u>	1

CO 4	Establish serial communication between Arduino and external devices using a Bluetooth module	
	SEC-251-ELS: Python Programming for Electronic Science	
CO 1	Understand and apply basic Python syntax, data types, control structures, and input/output operations to solve simple computational problems.	
CO 2	Develop problem-solving skills through implementation of mathematical and logical algorithms such as prime checking, factorial, Fibonacci series, and conversions.	
CO 3	Design and simulate electronic circuit formulas (Ohm's Law, Power, Resistor Calculator, 555 Timer, PWM) using Python programming	
CO 4	Utilize Python to analyze, visualize, and interpret data related to electronics signals and systems (e.g., sine wave plotting, battery backup estimation).	
CO 5	Apply structured programming concepts to build reusable and modular solutions such as calculators, data converters, and component analyzers.	
	ELE-291-MN:Communication Electronics	
CO 1	Understand different blocks in communication systems, types of noise in communication systems and its different parameters	
CO 2	Understand need of modulation, modulation process, amplitude modulation, frequency modulation and demodulation methods	
CO 3	Describe the operation and applications of TDM and FDM in communication systems and identify their differences.	
CO 4	Apply the concept of sampling and the sampling theorem in digital communication.	
CO 5	Study the difference between digital Modulation techniques ASK, FSK, PSK as well as PCM and its applications.	
CO 6	Describe satellite orbits, transponders, uplink/downlink concepts, and applications of satellite communication in global connectivity.	
	ELE-292-MNP: Lab Course on Communication Electronics	
CO 1	Understand the design concepts of different types Analog Modulation	
CO 2	Understand the design concepts of different types Digital Modulation Techniques	
CO 3	Understand the design concepts of different types Pulse Modulation Techniques	
CO 4	Study of Various Applications of Communication System	
CO 5	Understand the principles of Time Division Multiplexing (TDM) and Frequency Division Multiplexing (FDM)	
CO 6	Describe the block diagram and working of an AM and FM broadcasting system	
-		

CO N-	Course Outcomes	
CO No.	After completing B.Sc. degree programme, the students will be able to:	
Class: TYBSo	e: SEM V	
	EL 351: Paper I: Digital Design using VERILOG	
CO 1	Know and understand structure of HDL and Verilog.	
CO 2	Understand different modeling styles in Verilog.	
CO 3	Use Verilog effectively for simulation, verification and synthesis of digital system.	
CO 4	Understand basics of programmable logic devices.	
EL	352: Paper II: Microcontroller Architecture and Programming	
CO 1	Understand the basics of microcontroller.	
CO 2	Acquire basic programming skills in C language.	
CO 3	Understand and acquire basic programming skills for AVR microcontroller.	
	EL 353: Paper III: Analog circuit Design and Applications	
CO 1	Understand basics of analog circuit design.	
CO 2	Analyze waveform generators required for testing different circuits.	
CO 3	Build application circuits using specialized Ics.	
CO 4	Design analog systems using available ICs.	
	EL 354: Paper IV: Nanoelectronics	
CO 1	Understand basic concepts of nano electronic devices and nano technology.	
CO 2	Understand the electron transport mechanism in nanostructures.	
CO 3	Understand techniques of characterization of nanostructures.	
CO 4	Understand different devices constructed using nanotechnology.	
	EL 355: Paper V: Signals and Systems	
CO 1	Know basics of electronic signals.	
CO 2	Know different types of systems.	
CO 3	Analyze systems using Laplace and Fourier analysis.	
CO 4	Understand digital signal processing system.	

EL 356(A): Paper VI(A): Optics and Fiber Optic Communication		
CO 1	To acquire Knowledge of optical fiber communication system.	
CO 2	To understand different parameters of optical fibers.	
CO 3	To learn essential optical components of Fiber Optic Communication.	
CO 4	To analyze and integrate fiber optical network components in variety of networking schemes.	
	EL 357: Paper VII: Practical Course I	
CO 1	Analyze different design and test procedures for analog circuits and systems.	
CO 2	Measure different parameters of optical fiber communication systems	
CO 3	Understand importance of product design and entrepreneurship.	
CO 4	Develop electronic systems for given application.	
	EL 358: Paper VIII: Practical Course II	
CO 1	Develop and simulate design digital systems using Verilog.	
CO 2	Design and develop AVR microcontroller based systems.	
CO 3	Understand different nanoelectronic devices.	
CO 4	Inculcate basic skills required for design and development of embedded Systems.	
	EL 359: Paper IX: Practical Course III(Project)	
CO 1	Understand basic methodology of selection of topic for project.	
CO 2	Understand how to do literature review for selected topic for project.	
CO 3	Apply the knowledge for design and development of the selected project.	
CO 4	Use different software and hardware for testing, validation and verification of circuits for successful outcome of project	
CO 5	Understand documentation process in the form of presentation and project report.	
CO 6	Understand process of systematic development of electronic system and Development of skills for successful outcome.	
]	ELSEC 351: Paper X: SEC1: Electronic Design Automation Tools	
CO 1	Design the electronics circuits using EDA software tools	
CO 2	Simulate various analog and digital circuits using EDA software tools	

CO 2	
CO 3	Plot various waveforms.
CO 4	Simulate basic electronic system blocks
F	ELSEC 352: Paper XI: SEC2: Internet of Things and Applications
CO 1	Know the basic building blocks of IoT
CO 2	Know IoT protocols
CO 3	Understand how to Design and Develop IoT based system through case studies
Class: T.Y.I	B.Sc. Semester - VI
	EL 361: Paper I: Modern Communication Systems
CO 1	Understand the digital modulation techniques.
CO 2	Understand different types of pulse modulation techniques.
CO 3	Describe the evolution and importance of Mobile communication and cellular communication
CO 4	Know the basics of satellite communication systems.
E	L 362: Paper II: Embedded System Design using Microcontrollers
CO 1	Understand features and architecture of PIC microcontroller.
CO 2	Demonstrate how to interface PIC microcontroller with different peripherals
CO 3	Understand features and architecture of ARM microcontroller.
CO 4	Demonstrate embedded system using given microcontroller.
	EL 363: Paper III: Industrial Electronics
CO 1	Understand basics of Passive Electronic Component Manufacturing Processes
CO 2	Understand process involved in PCB manufacture and Modern Circuit Assembly
CO 3	Know about the Semiconductor Device and IC Fabrication Process
	EL 366(B): Paper VI (B): Sensors and Systems
CO 1	Understand basic principles and types of different sensors.
CO 2	Understand basic principles and types of actuators.
CO 3	Know about signal conditioning systems for sensors.
	EL 367: Paper VII: Practical Course I
	EL 367: Paper VII: Practical Course I

CO 1	Demonstrate power electronic circuits.	
CO 2	Demonstrate different types of digital communication systems.	
CO 3	Understand working principles of different power devices and their Character	
	EL 368: Paper VIII: Practical Course II	
CO 1	Design embedded systems using PIC microcontroller.	
CO 2	Design embedded systems using ARM microcontroller.	
CO 3	Demonstrate PLC SCADA using ladder programming.	
CO 4	Design and develop sensor systems for different applications.	
	EL 369: Paper IX: Practical Course III(Project)	
CO 1	Understand basic methodology of selection of topic for project.	
CO 2	Understand how to do literature review for selected topic for project,	
CO 3	Apply the knowledge for design and development of the selected project.	
CO 4	Use different software and hardware for testing, validation and verification of circuits for successful outcome of project	
CO 5	Understand documentation process in the form of presentation and project report	
CO 6	Understand process of systematic development of electronic system and Development of skills for successful outcome.	
	ELSEC 361: Paper X SEC1: Design of Printed Circuit Boards	
CO 1	Understand basics of PCB.	
CO 2	Know about the PCB design technology.	
CO 3	Know about different soldering techniques.	
	ELSEC 362: Paper XI: SEC2: Mobile Application Development	
CO 1	Understand basics of Mobile application development	
CO 2	Develop ability to work in android development environment.	
CO 3	Design and develop mobile applications.	

Head
Dept. of Electronice Science
A. A. College, Manchar