

Rayat Shikshan Sanstha's Annasaheb Awate College Manchar

S.Y. B.Sc. CH-301 : Physical & Analytical Chemistry

Chapter 1 : Chemical Kinetics Lecture 04 : Integrated Rate-Laws by Prof. Hinge V. B. NET,SET & GATE 1. Chemical Kinetics

><u>Introduction to kinetics</u>:

Rates of chemical reactions – definition of rates, rate laws and rate constants, reaction order and molecularity, determination of rate law, factors affecting reaction rates.

➤ <u>Integrated rate laws</u> –

Zeroth-order reactions, first-order reactions, second-order reactions (with equal and unequal initial concentration of reactants), half-life period.

><u>Methods for determination order of a reactions</u>.

> <u>Arrhenius equation-</u>

temperature dependence of reaction rates, interpretation of Arrhenius parameters.

Reaction dynamics

collision theory and transition-state theory of bimolecular reactions, comparison of the two theories.

➢ <u>Problems</u>.

Introduction to kinetics

1.0-

What is Chemical Kinetics?

Measurement of rate of chemical reaction under the given conditions temperature, pressure & concentration.

Rate of chemical reactions :

B

A

Rate of a reaction

$$A \longrightarrow B$$

Change in concentration of a reactant or product in unit time

1. Rate of consumption of reactant

The rate of decrease in concentration of any one of the reactants per unit time.

$$r = -\frac{d[A]}{dt}$$

2. Rate of formation of product

The rate of increase in concentration of any one of the products.

$$r = +\frac{d[B]}{dt}$$

1)
$$aA + bB \longrightarrow cC + dD$$

$$r = -\frac{1}{a}\frac{d[A]}{dt} = -\frac{1}{b}\frac{d[B]}{dt} = +\frac{1}{c}\frac{d[C]}{dt} = +\frac{1}{d}\frac{d[D]}{dt}$$

2) $A + 3B \longrightarrow 2C + D + 2E$

$$\mathbf{r} = -\frac{d[A]}{dt} = -\frac{1}{3}\frac{d[B]}{dt} = \frac{1}{2}\frac{d[C]}{dt} = \frac{d[D]}{dt} = \frac{1}{2}\frac{d[E]}{dt}$$

3) $2NO_{(g)} + 2H_{2(g)} \longrightarrow N_{2(g)} + 2H_2O_{(g)}$

 $\mathbf{r} = -\frac{1}{2} \frac{d[NO]}{dt} = -\frac{1}{2} \frac{d[H_2]}{dt} = \frac{d[N_2]}{dt} = \frac{1}{2} \frac{d[H_2O]}{dt}$

Rate Law & Rate constant /velocity constant

$$xA \longrightarrow yB$$

The rate of reaction is experimentally given by, Rate-law

 $r = k[A]^{\mathcal{X}}$

k is rate constant / velocity constant of the reaction at the given temperature.

If [A] is unity;

$$r = k$$

 $aA + bB + cC \longrightarrow Product$,

Rate law for this reaction is,

 $r = k[A]^{a}[B]^{b}[C]^{c}$

If [A] = [B] = [C] = 1, then k = r

Thus **rate constant of reaction**, is the *rate of reaction* when concentration of each reactant is unity.

Order of reaction

The sum of the concentration power of the reactant molecules in rate-law expression.

Reaction	Rate law (experimental quantity)	Order
A→P	$r = k[A]^0$	Zero
A→P	r = k[A]	First
2A→P	$r = k[A]^2$	Second

eg,

Reaction	Rate law	Order
A+B→P	r = k[A][B]	Second order
3A→P	$r = k[A]^3$	Third order
2A+B→P	$r = k[A]^2[B]$	Third order
A+2B→P	$r = k[A][B]^2$	Third order
A+B+C→P	r = k[A][B][C]	Third order
$A+(1/2)B\rightarrow P$	$r = k[A][B]^{1/2}$	1.5 th order

From this table order may be 0, 1,2,3 & fraction.

 \succ Order of a reaction is a <u>experimental</u> quantity.

 \succ Order of a reaction can be <u>zero</u>, integer or fraction.

The reactions taking place in one step are called <u>elementary</u> <u>reactions</u>. In such reaction by seeing reaction on paper we can find order.

In <u>Complex reaction</u> (which takes place in more than one step) balanced chemical equation never gives us a true order order of a complex reaction.

$\text{KClO}_3 + 6\text{FeSO}_4 + 3\text{H}_2\text{SO}_4 \rightarrow \text{KCl} + 3\text{Fe}_2(\text{SO}_4)_3 + 3\text{H}_2\text{O}$

What is the order of given reaction ?

This reaction which apparently seems to be of tenth order is actually a **second order reaction**. This shows that this reaction takes place in several steps ie, this is a complex reaction.

Molecularity of a reaction

The number of reacting species (atoms, ions or molecules) taking part in an elementary reaction, which must collide simultaneously in order to bring about a chemical reaction is called molecularity of a reaction.

 $NH_4NO_2 \rightarrow N_2 + 2H_2O$ $2HI \rightarrow H_2 + I_2$ $2NO + O_2 \rightarrow 2NO_2$

Unimolecular reaction Bimolecular reaction Trimolecular reaction

Order of a reaction

Molecularity of a reaction

The sum of the concentration power of the reactant molecules in rate-law expression

It is experimental quantity

The number of reacting species (atoms, ions or molecules) taking part in an elementary reaction

It is theoretical quantity

It can be zero, integer or fraction

Order is applicable to elementary as well as complex reactions

It is always Integer. can't be fraction or zero.

Units of rate constants

Zero order Rxn

First order Rxn

Second order Rxn

Unit of Rate constant k

mol. ¹⁻ⁿ lit. ⁿ⁻¹ sec ⁻¹	Order of reaction	Unit of rate constant
n=0	Zero order reaction	mol.lit. ⁻¹ sec ⁻¹
n=1	First order reaction	Sec. ⁻¹
n=2	Second order reaction	mol ⁻¹ lit.sec ⁻¹
n=3	Third order reaction	mol ¹⁻ⁿ lit. ⁿ⁻¹ sec ⁻¹

Determination of rate law

1. Isolation method

 $A + B \longrightarrow Product$

- Concentration of all the reactants except one are in large excess.
- If B is in large excess, that means its concentration is constant throughout the reaction then we get rate expression w. r. t. A

similarly, If A is in large excess, that means its concentration is constant throughout the reaction then we get rate expression w. r. t. B

➢ By comparing two rate expressions we get the overall rate-law.

Write rate-law & find the order of reaction from the given experimental data ?

Experiment no	[A]	[B]	Overall rate
1	30	30	100
2	60	30	400
3	30	60	200
4	60	60	800

In Experiment 1 & 2 the concⁿ of B is kept constant. Therefore we write rate expression w.r.t. A

1. $Rate = k[A]^{a}[B]^{b}$

 $100 = k30^a 30^b$

2. $Rate = k[A]^{a}[B]^{b}$	Experime
400 - bc0a20b	1
$400 = K00^{\circ}30^{\circ}$	2
Divide eq. 2 by 1	3
$\frac{400}{100} = \left(\frac{60}{30}\right)^a \left(\frac{30}{30}\right)^b$	4
$4 = 2^{a}$	
a = 2	

Experiment no	[A]	[B]	Overall rate
1	30	30	100
2	60	30	400
3	30	60	200
4	60	60	800

In Experiment 1 & 3 the concⁿ of A is kept constant. Therefore we write rate expression w.r.t. B

1. $Rate = k[A]^{a}[B]^{b}$ $100 = k30^{a}30^{b}$ 3. Rate = $k[A]^a[B]^b$ $200 = k30^a 60^b$ Divide eq. 3 by 1 $\frac{200}{100} = \left(\frac{60}{30}\right)^b$ $2 = 2^{b}$ b = 1

Experiment no	[A]	[B]	Overall rate
1	30	30	100
2	60	30	400
3	30	60	200
4	60	60	800

Overall rate-law is $Rate = k[A]^{a}[B]^{b}$

Rate = $k[A]^{2}[B]^{1}$ & order is 3.

2. Initial rates method

 $A + B \longrightarrow$ Product This method is used in conjunction with the isolation method. In this method initial rates of reaction is determined for different concⁿ of A reactant by keeping B reactant concⁿ constant From that we get

$$Rate = k[A]^a$$

taking log on both sides

log(Rate) = logk + alog[A]log(Rate) = alog[A] + logky = mx + c

Plot a graph, we get straight line with intercept logk & slope a

lly, by keeping A reactant concⁿ constant....Determine the value of b from slope

Then put value of a & b in rate law expression.

 $Rate = k[A]^a[B]^b$

					Mee	t attenda	nce -(202	0-08-17 _	12_08)-(dop	oerbot) - Ex	cel (Unlicense	ed Product)			Vikram Hinge		A –	ð	
File Home Insert	Page Layo	out Fo	ormulas	Data	Review	View	Help	Γ	ell me what	you want to	do							<u>д</u> s	Sh
1 - : 🗙	$\checkmark f_x$	Atter	ndance b	ot: dev(Pa	avan:p2p	dops@g	gmail.co	m) on 20	20-08-17 :	12:08 :									
A B	С	D	E	F	G		н	I.	J	К	L	М	N	0	Р	Q	R	S	
Attendance bot: dev(F	avan:p2pdo	ps@gma	il.com) o	n 2020-0	3-17 : 12:	08 :													
Members :37																			
vikram hinge																			
Abhishek Bhor																			
aishwarya barve																			
Aishwarya Dongare																			
ANIKET JADHAV																			
) Anisha Argade																			
Anita Kale																			
Damini Talpe																			
Dipali Thorat																			
Kajal Nighot																			
Kaushal Thorat																			
Komal Dhumal																			
manali gunjal																			
Manasi Hinge																			
Nikita Shinde																			
Pallavi Bokad																			
Pradnya Bhor																			
Pradnya Karale																			
Pranjal Thorat																			
Pranjal Inosar																			
Pratiksna Poknarkar																			
priyanka bhor																			_
Meet attend	lance -(2020	0-08-17	+								E								
																		+	+

							Meet	attendance -(2	2020-08-17	_ 12_08)-(do	perbot) - E	xcel (Unlicen:	sed Product)			Vikram Hing	je 🎴	函 —	٥	×
Fil	e Home	Insert	Page	e Layout	Formulas	Data	Review	View He	lp Q	Tell me what	t you want to	o do							<u>م</u>	Share
A1	·	×	~	fx At	ttendance	bot: dev(F	Pavan:p2pc	lops@gmail.	com) on 2	020-08-17	: 12:08 :									~
	А	В	С	D	E	F	G	Н	1	J	к	L	М	N	0	Р	Q	R	S	
16 I	(omal Dhumal																			
17 I	manali gunjal																			
18 I	Manasi Hinge																			
19 I	Nikita Shinde																			
20	Pallavi Bokad																			
21	Pradnya Bhor																			
22	Pradnya Karale																			
23	Pranjal Thorat																			
24	Pranjal Thosar																			
25 I	Pratiksha Pokha	arkar																		
26	oriyanka bhor																			
27	Priyesh Bangar																			
28	Rohit Bhor																			
29	Rutuja Lande																			
30 I	Rutuja Shewale																			
31 9	ejal Pingale																			
32 9	Shivani Lohaka	re																		
33 9	hreya bhalera	0																		
34 9	shruti davkhare	•																		
35 9	Sujit Awate																			
36 9	Swati Bhagwat																			
37	/aishnavi Ghoc	lekar																		
38	/aishnavi Hinge	9																		
39	vaishnavi lande	•																		
40	/arsha Shelkan	de																		
41	vidya jadhav																			
	Meet	attenda	ance -(ä	2020-08-1	17_ (+							(-	
] []		+	+ 1009
							~												2:26 PM	
	D Type	here to	searc	ch			0	ei 💽			9 🖪		×				<u> </u>	(. ENG 17:	-08-2020	
			_								_									

Factors affecting reaction rates

1. Temperature

The rate of reaction increases as temperature increases, the rate of reaction decreases as temperature decreases. Generally rate of reaction get doubled by increasing the temp. by 10°C.

2. Catalyst

A catalyst is a substance that can increase the rate of a reaction but which itself unchanged in amount & chemical composition at the end of the reaction.

3. Concentration

Concentration refers to the no of particles in a given volume concentration is like strength of a substance. The higher the concentration of the substance higher the reaction rate.

4. Surface area

An increase in surface area will result in an increase of the exposure ,of reactants to one another.

The greater the exposure, the greater the reaction rate.

5. Stirring

Stirring will also cause an increase in reactant exposure. Therefore, the more stirring ,the faster the reaction rate.

Problems

1. For the reaction $R \rightarrow P$, the concentration of a reactant changes from 0.03M to 0.02M in 25 minutes. Calculate the average rate of reaction using <u>units of time both in minutes and seconds</u>.

$$Rate = -\frac{d[R]}{dt}$$
$$= \frac{(0.03 - 0.02)M}{25 min}$$
$$= \frac{0.01}{25} M \dots min^{-1}$$

2. In a reaction, $2A \rightarrow$ Products, the concentration of A decreases from 0.5mol L⁻¹ to 0.4 mol L⁻¹ in 10 minutes. Calculate the rate during this interval?

$$Rate = -\frac{d[R]}{dt}$$

3. For a reaction, $A + B \rightarrow$ Product; the rate law is given by, $r = k [A]^{1/2} [B]^2$. What is the order of the reaction?

4. The conversion of molecules X to Y follows second order kinetics. If concentration of X is increased to three times how will it affect the rate of formation of Y ?

- **5**. Calculate the overall order of a reaction which has the rate expression
- (a) Rate = $k [A]^{1/2} [B]^{3/2}$ (b) Rate = $k [A]^{3/2} [B]^{-1}$
6. A reaction is second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is

(i) doubled (ii) reduced to half?

7. From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants. (i) $3NO(g) \rightarrow N_2O(g)$ Rate = $k[NO]^2$ (ii) $H_2O_2(aq) + 3I^-(aq) + 2H^+ \rightarrow 2H_2O(l) + 3 I \square$ Rate = $k[H_2O_2][I^-]$ (iii) $CH_3CHO(g) \rightarrow CH_4(g) + CO(g)$ Rate = k [CH3CHO]^{3/2} (iv) $C_2H_5Cl(g) \rightarrow C_2H_4(g) + HCl(g)$ Rate = k [C₂H₅Cl] 8. In a reaction between A and B, the initial rate of reaction (r_0) was measured for different initial concentrations of A and B as given below:

A/ mol L^{-1}	0.20	0.20	0.40
$B/ mol L^{-1}$	0.30	0.10	0.05
$r_0/mol L^{-1}s^{-1}$	5.07×10^{-5}	5.07×10^{-5}	1.43×10^{-4}

What is the order of the reaction with respect to A and B?

9. Mention the factors that affect the rate of a chemical reaction.

10. The following results have been obtained during the kinetic studies of the reaction: $2A + B \rightarrow C + D$

Experiment	$[A]/mol L^{-1}$	$[B]/mol L^{-1}$	Initial rate of formation of D/mol L ⁻¹ min ⁻¹
Ι	0.1	0.1	6.0×10^{-3}
II	0.3	0.2	7.2×10^{-2}
III	0.3	0.4	2.88×10^{-1}
IV	0.4	0.1	2.40×10^{-2}

Determine the rate law and the rate constant for the reaction.

11. The reaction between A and B is first order with respect to A and zero order with respect to B. Fill in the blanks in the following table:

Experiment	Experiment [A]/ mol L^{-1}		Initial rate/ mol L ⁻¹ min ⁻¹
Ι	0.1	0.1	2.0×10^{-2}
II	_	0.2	4.0×10^{-2}
III	0.4	0.4	_
IV	-	0.2	2.0×10^{-2}

12.Which of the following statements is correct?

(i) The rate of a reaction decreases with passage of time as the concentration of reactants decreases.

(ii) The rate of a reaction is same at any time during the reaction.(iii) The rate of a reaction is independent of temperature change.(iv) The rate of a reaction decreases with increase in concentration of reactant(s).

- 13. Rate law for the reaction $A + 2B \longrightarrow C$ is found to be Rate = k [A][B]
- Concentration of reactant 'B' is doubled, keeping the concentration
- of 'A' constant, the value of rate constant will be_____.
- (i) the same
- (ii) doubled
- (iii) quadrupled(iv) halved

14.

Compounds 'A' and 'B' react according to the following chemical equation. A (g) + 2 B (g) \longrightarrow 2C (g)

Concentration of either 'A' or 'B' were changed keeping the concentrations of one of the reactants constant and rates were measured as a function of initial concentration. Following results were obtained. Choose the correct option for the rate equations for this reaction.

Experiment	Initial concentration of [A]/mol L ⁻¹	Initial concentration of [B]/mol L ⁻¹	Initial rate of formation of [C]/mol L ⁻¹ s ⁻¹			
1.	0.30	0.30	0.10			
2.	0.30	0.60	0.40			
3.	0.60	0.30	0.20			

- (i) Rate = $k [A]^2 [B]$
- (ii) Rate = k [A] [B]²
- (iii) Rate = k [A] [B]
- (iv) Rate = $k [A]^2 [B]^0$

							Meet	t attenda	ince -								Meet	: attenda	nce -
F	ile Home	Insert	Page l	ayout	Formulas	Data	Review	View	н	File	e Home	Insert	Page	Layout	Formulas	Data	Review	View	н
ĺ	NOTICE Most	features	are disabl	ed because	e your Office	product is	inactive. To	o use for	free,	0	NOTICE Mo	st features	are disab	led becau	use your Office	product i	s inactive. To	o use for	free,
A1	Ţ	: ×	~	<i>f</i> x At	tendance b	ot: dev(P	avan:p2p	dops@	gmai	A1	-	: ×	~	fx f	Attendance b	ot: dev(l	Pavan:p2p	dops@g	gmai
	A	В	С	D	E	F	G		н		^	P	C		E				, ц
1	Attendance bot	t: dev(P	avan:p2p	dops@gr	mail.com) c	n 2020-0	8-18 : 13:	40 :	_	18 5	A Sagar Chinch	D	C	U	E	Г	6		п
2										10 3	braddba ku	pure							
3	Members :37									19 5		1j11 To 0							
4										20 5									
5	vikram hinge									21 5		are							
6	Abhishek Bhor									22 3	ujit Awate								
7	aishwarya barv	/e								23 V	/alshnavi Gn	одекаг							
8	Aishwarya Don	gare								24 V	aishnavi Hir	nge							
9	ANIKET JADHA	V								25 v	aishnavi lan	de							
10	Anita Kale									26 v	vidya jadhav								
11	Damini Talpe									27 P	Pujan Bhor								
12	Fiza Jamadar									28 F	Rohit Bhor								
13	Harshada Thor	at								29 P	Priyesh Bang	ar							
14	kajal dhumal									30 P	Pratiksha Pok	kharkar							
15	Rudra Thorat									31 p	oriyanka bho	r							
16	Rutuja Lande									32 P	Pranjal Thora	it							
17	Rutuja Shewale	2								33 P	Pranjal Thosa	ar							
18	Sagar Chinchpu	ıre								34 P	Pradnya Bho	r							
19	shraddha kunji	r								35 P	Pradnya Litke	2							
20	shreya bhalera	0								36 K	aushal Thor	at							
21	shruti davkhare	е								37 n	nanali gunja	I							
22	Sujit Awate									38 N	Manasi Hinge	9							
23	Vaishnavi Ghoo	dekar								39 N	Vikita Shinde								
24	Vaishnavi Hinge	e								40 P	allavi Bokad								
25	vaishnavi lande	9								41 K	ajal Nighot								
4	Meet	attend	ance -(2	020-08-1	8_ (+					42									
											Me	et attenda	ance -(2	2020-08	-18 _ 🤅				

15. Consider the reaction A $\Box \rightarrow$ B. The concentration of both the reactants and the products varies exponentially with time. Which of the following figures correctly describes the change in concentration of reactants and products with time?

Zero order reaction :

The reaction in which the rate of reaction is independent of initial concentration of reactant molecule.

 $A \rightarrow \text{Product}$ $Rate = k[A]^0$

 $-\frac{d[A]}{dt} = k[A]^{0}$ $-\frac{d[A]}{dt} = k$

$$-d[A] = kdt$$

Taking integration on both sides

$$\int_{[A]_0}^{[A]_t} -d[A] = k \int_{t=0}^{t=t} dt$$

 $[A]_0 \text{ is initial conc}^n \text{ of } A$ $[A]_t \text{ is conc}^n \text{ of } A \text{ at time t}$ Time is from t= 0 to t=t

$$\{-[A]\}_{[A]_0}^{[A]_t} = k\{t\}_0^t$$

$$-\{[A]_t - [A]_0\} = k\{t - 0\}$$

$$-[A]_{t} + [A]_{0} = kt$$

$$[A]_{0} - [A]_{t} = kt \qquad (1)$$

$$k = \frac{[A]_{0} - [A]_{t}}{t} \qquad (2)$$

From equation (1)

$$-[A]_t = kt - [A]_0$$
$$[A]_t = -kt + [A]_0$$

Compare this with equation of line

$$y = mx + c$$

Half life of zero order reaction:

The time at which only 50% of reactant get converted into product.

or

The time at which only half of the reactant get converted into product.

$$\therefore \text{ Put } [A]_{t} = \frac{[A]_{0}}{2} \text{ in equation } (2) \& t = t_{1/2}$$

$$k = \frac{[A]_{0} - \frac{[A]_{0}}{2}}{t_{1/2}}$$
The half life of zero order
$$k = \frac{[A]_{0}}{2t_{1/2}}$$
The half life of zero order
reaction is directly
proportional to initial
concentration of reactant
molecule

First Order Reaction:

The reaction in which rate of reaction is depends on first power of the reactant molecule.

 $A \longrightarrow Product$ $Rate = k[A]^1$ $-\frac{d[A]}{dt} = k[A]$ $-\frac{d[A]}{[A]} = kdt$

Taking integration on both sides

$$-\int_{[A]0}^{[A]t} \frac{d[A]}{[A]} = k \int_{0}^{t} dt$$

$$-\{\ln[A]\}_{=}^{[A]_{t}} k\{t\}_{[A]_{0}}^{t}$$

$$-\{\ln[A]_{t} - \ln[A]_{0} = k\{t - 0\}$$

$$-\ln[A]_{t} + \ln[A]_{0} = kt$$

$$\ln[A]_{0} - \ln[A]_{t} = kt$$

$$kt = \ln[A]_{0} - \ln[A]_{t}$$

$$kt = \ln[A]_0 - \ln[A]_t$$

$$kt = ln \frac{[A]0}{[A]t}$$

$$k = \frac{1}{t} ln \frac{[A]0}{[A]t}$$

$$k = \frac{2.303}{t} \log \frac{[A]_0}{[A]_t}$$

$$-\ln[A]_{t} = kt - \ln[A]_{0}$$
$$\ln[A]_{t} = -kt + \ln[A]_{0}$$
$$y = mx + c$$

From this equation, it can be seen that the concentration of A decreases with time in an exponential way. Such a relationship is sometimes referred to as an exponential decay.

Half life of first order reaction:

The time at which only 50% of reactant get converted into product. or The time at which only half of the reactant get converted into product.

:. Put
$$[A]_t = \frac{[A]_0}{2}$$
 in First order equation & $t = t_{1/2}$

$$k = \frac{2.303}{t} \log \frac{\left[A\right]_0}{\left[A\right]_t}$$

$$k = \frac{2.303}{t_{1/2}} \log \frac{[A]_{0}}{[A]_{0/2}}$$

$$t_{1/2} = \frac{2.303}{k} \log \frac{2[A]_0}{[A]_0}$$

$$t_{1/2} = \frac{2.303}{k} \log 2$$

$$t_{1/2} = \frac{2.303}{k} * 0.3010$$

$$t_{1/2} = \frac{0.693}{k}$$

The half life of first order reaction is independent of initial concentration of reactant molecule

Second order Reaction (with equal initial concentration of reactant)

The reaction in which rate of reaction is depends on Second power of the reactant molecule.

$$2 A \longrightarrow \text{Products}$$

$$\text{Rate} = k[A]^2$$

$$-\frac{d[A]}{dt} = k[A]^2$$

$$-\frac{d[A]}{[A]^2} = kdt$$

If the equation is integrated between limits on concentration of $[A]_o$ at t=0 and $[A]_t$ at time t, we have

$$-\int_{[A]_{0}}^{[A]_{t}} \frac{d[A]}{[A]^{2}} = k \int_{0}^{t} dt \qquad \int x^{n} = \frac{x^{n+1}}{n+1}$$
$$-\int_{[A]_{0}}^{[A]_{t}} \frac{1}{[A]^{2}} d[A] = k \int_{0}^{t} dt$$
$$-\int_{[A]_{0}}^{[A]_{t}} [A]^{-2} d[A] = k \int_{0}^{t} dt \qquad \{\frac{[A]^{-2+1}}{-2+1}\} = k\{t\}$$

$$-\left\{\frac{[A]^{-2+1}}{-2+1}\right\}_{[A]_{0}}^{[A]_{t}} = k\{t\}_{0}^{t}$$

$$-\left\{\frac{[A]^{-1}}{-1}\right\}_{[A]_{0}}^{[A]_{t}} = k(t-0)$$

$$\left\{\frac{1}{\left[A\right]_{t}} - \frac{1}{\left[A\right]_{0}}\right\} = kt$$

$$k = \frac{1}{t} \left\{ \frac{1}{\left[A\right]_t} - \frac{1}{\left[A\right]_0} \right\}$$

$$\left\{\frac{1}{[A]}\right\}_{[A]_0}^{[A]_t} = \mathrm{kt}$$

The time at which only 50% of reactant get converted into product.

The time at which only half of the reactant get converted into product.

or

:. Put
$$[A]_t = \frac{[A]_0}{2}$$
 in Second order equation & $t = t_{1/2}$

$$k = \frac{1}{t} \left\{ \frac{1}{[A]_t} - \frac{1}{[A]_0} \right\}$$

$$k = \frac{1}{t_{1/2}} \left\{ \frac{1}{[A]_0} - \frac{1}{[A]_0} \right\}$$
$$t_{1/2} = \frac{1}{k} \left\{ \frac{2}{[A]_0} - \frac{1}{[A]_0} \right\}$$
$$t_{1/2} = \frac{1}{k[A]_0}$$

Half life of Second order reaction inversely proportional to initial concentration of reactant molecule.

Second order reaction: (with unequal initial concentration of reactants)

$$A + B \longrightarrow \text{Products}$$

$$Rate = k[A][B]$$

$$-\frac{d[A]}{dt} = k[A][B]$$

$$k = \frac{1}{t([B]_0 - [A]_0)} \left\{ ln \frac{[A]_0}{[B]_0} + ln \frac{[B]_t}{[A]_t} \right\}$$

Third order reaction: The reaction in which rate of reaction is depends on third power of the reactant molecule.

3 A Products Rate = $k[A]^3$ $-\frac{d[A]}{dt} = k[A]^3$

$$k = \frac{1}{2t} \left\{ \frac{1}{[A]_t^2} - \frac{1}{[A]_0^2} \right\}$$

Half life of third order reaction:

The time at which only 50% of reactant get converted into product. or The time at which only half of the reactant get converted into product. \therefore Put $[A]_t = \frac{[A]_0}{2}$ in third order equation & $t = t_{1/2}$

$$k = \frac{1}{2t} \left\{ \frac{1}{[A]_t^2} - \frac{1}{[A]_0^2} \right\}$$

$$t_{1/2} = \frac{1}{2k} \left\{ \frac{1}{([A]_0/2)^2} - \frac{1}{[A]_0^2} \right\}$$

$$t_{1/2} = \frac{3}{2k[A]_{\rm o}^2}$$

Nth Order reaction:

n A
$$\longrightarrow$$
 Products
Rate = k[A]³
 $-\frac{d[A]}{dt} = k[A]^3$

$$k = \frac{1}{t(n-1)} \left\{ \frac{1}{[A]_t^{n-1}} - \frac{1}{[A]_0^{n-1}} \right\}$$

Half life of nth order reaction:

Put
$$[A]_t = \frac{[A]_0}{2}$$
 in third order equation & $t = t_{1/2}$

$$k = \frac{1}{t(n-1)} \left\{ \frac{1}{[A]_t^{n-1}} - \frac{1}{[A]_0^{n-1}} \right\}$$

$$t_{1/2} = \frac{1}{k(n-1)} \left\{ \frac{1}{\left(\frac{[A]_0}{2}\right)^{n-1}} - \frac{1}{[A]_0^{n-1}} \right\}$$

$$t_{1/2} = \frac{2^{n-1} - 1}{k(n-1)[A]_0^{n-1}}$$

n	Orde r	Equation	Unit of rate Constant	Half life
n	n th	$k = \frac{1}{t(n-1)} \left\{ \frac{1}{[A]_t^{n-1}} - \frac{1}{[A]_0^{n-1}} \right\}$	mol ¹⁻ⁿ lit. ⁿ⁻¹ sec ⁻	$t_{1/2} = \frac{2^{n-1} - 1}{k(n-1)[A]_0^{n-1}}$
0	Oth	Put value of $n = 0$ in nth order eq ⁿ		
2	2nd	Put value of $n = 2$ in nth order eq ⁿ		
3	3rd	Put value of $n = 3$ in nth order eq ⁿ		
1	1st	$k = \frac{2.303}{t} \log \frac{[A]_0}{[A]_t}$		$t_{1/2} = \frac{0.693}{k}$

Problems

4.2 For the reaction:

 $2A + B \rightarrow A_2B$

the rate = $k[A][B]^2$ with k = 2.0 × 10⁻⁶ mol⁻² L² s⁻¹. Calculate the initial rate of the reaction when [A] = 0.1 mol L⁻¹, [B] = 0.2 mol L⁻¹. Calculate the rate of reaction after [A] is reduced to 0.06 mol L⁻¹.

- **4.3** The decomposition of NH_3 on platinum surface is zero order reaction. What are the rates of production of N_2 and H_2 if $k = 2.5 \times 10^{-4} \text{ mol}^{-1} \text{ L s}^{-1}$?
- **4.4** The decomposition of dimethyl ether leads to the formation of CH_4 , H_2 and CO and the reaction rate is given by

Rate = $k [CH_3OCH_3]^{3/2}$

The rate of reaction is followed by increase in pressure in a closed vessel, so the rate can also be expressed in terms of the partial pressure of dimethyl ether, i.e.,

```
Rate k p_{CH_3OCH_3}<sup>3/2</sup>
```

If the pressure is measured in bar and time in minutes, then what are the units of rate and rate constants?
- **4.7** What is the effect of temperature on the rate constant of a reaction? How can this effect of temperature on rate constant be represented quantitatively?
- **4.8** In a pseudo first order hydrolysis of ester in water, the following results were obtained:

t/s	0	30	60	90
[Ester]/mol L^{-1}	0.55	0.31	0.17	0.085

(i) Calculate the average rate of reaction between the time interval 30 to 60 seconds.

(ii) Calculate the pseudo first order rate constant for the hydrolysis of ester.

- **4.9** A reaction is first order in A and second order in B.
 - (i) Write the differential rate equation.
 - (ii) How is the rate affected on increasing the concentration of B three times?
 - (iii) How is the rate affected when the concentrations of both A and B are doubled?

4.13 Calculate the half-life of a first order reaction from their rate constants given below:

(i)
$$200 \text{ s}^{-1}$$
 (ii) 2 min^{-1} (iii) 4 years^{-1}

- **4.14** The half-life for radioactive decay of ¹⁴C is 5730 years. An archaeological artifact containing wood had only 80% of the ¹⁴C found in a living tree. Estimate the age of the sample.
- **4.15** The experimental data for decomposition of N_2O_5

 $[2N_2O_5 \rightarrow 4NO_2 + O_2]$

in gas phase at 318K are given below:

t/s	0	400	800	1200	1600	2000	2400	2800	3200
$\begin{array}{l} 10^2 \times [\mathrm{N_2O_5}] / \\ \mathrm{mol} \ \mathrm{L^{-1}} \end{array}$	1.63	1.36	1.14	0.93	0.78	0.64	0.53	0.43	0.35

- (i) Plot $[N_2O_5]$ against t.
- (ii) Find the half-life period for the reaction.
- (iii) Draw a graph between $\log[N_2O_5]$ and t.
- (iv) What is the rate law ?
- (v) Calculate the rate constant.
- (vi) Calculate the half-life period from k and compare it with (ii).

- **4.16** The rate constant for a first order reaction is 60 s^{-1} . How much time will it take to reduce the initial concentration of the reactant to its $1/16^{\text{th}}$ value?
- **4.17** During nuclear explosion, one of the products is 90 Sr with half-life of 28.1 years. If 1µg of 90 Sr was absorbed in the bones of a newly born baby instead of calcium, how much of it will remain after 10 years and 60 years if it is not lost metabolically.
- **4.18** For a first order reaction, show that time required for 99% completion is twice the time required for the completion of 90% of reaction.
- **4.19** A first order reaction takes 40 min for 30% decomposition. Calculate $t_{1/2}$.
- **4.20** For the decomposition of azoisopropane to hexane and nitrogen at 543 K, the following data are obtained.

t (sec)	P(mm of Hg)
0	35.0
360	54.0
720	63.0

Calculate the rate constant.

4.21 The following data were obtained during the first order thermal decomposition of SO_2Cl_2 at a constant volume.

 $\mathrm{SO}_{2}\mathrm{Cl}_{2}(g) \rightarrow \mathrm{SO}_{2}(g) + \mathrm{Cl}_{2}(g)$

Experiment	Time/s ⁻¹	Total pressure/atm
1	0	0.5
2	100	0.6

Calculate the rate of the reaction when total pressure is 0.65 atm.

- **4.24** Consider a certain reaction $A \rightarrow$ Products with $k = 2.0 \times 10^{-2} \text{s}^{-1}$. Calculate the concentration of *A* remaining after 100 s if the initial concentration of *A* is 1.0 mol L⁻¹.
- **4.25** Sucrose decomposes in acid solution into glucose and fructose according to the first order rate law, with $t_{1/2} = 3.00$ hours. What fraction of sample of sucrose remains after 8 hours?

	А	В	С	D	E	F	G	
1	Attendanc	e bot: dev(Pavan:p2pc	dops@gmai	il.com) on 2	2020-08-25	: 13:28 :	
2								
3	Members	:28						
4								
5	vikram hin	ge						
6	Abhishek B	3hor						
7	Aishwarya	Dongare						
8	ANIKET JAI	VAHC						
9	Anisha Arg	ade						
10	Damini Tal	pe						
11	Harshada T	horat						
12	Indrajeet S	aswade						
13	Jostna Pok	harkar						
14	kajal dhum	nal						
15	Pranjal Tho	osar						
16	Pratiksha P	okharkar						
17	Pujan Bhoi	-						
18	Sagar Chin	chpure						
19	sejal Pinga	le						
20	Sujit Awat	e						
21	Tanaya Bar	ngar						
22	Vaishanvi	Waykar						
23	Vaishnavi	Ghodekar						
24	vidya jadh	av						
25	Pradnya Ka	rale						
26	Pradnya Li	tke						
27	Pranjal Tho	orat						
28	Nikita Shin	de						
29	piyush tho	rat						
30	Pradnya Bł	nor						
31	Kaushal Th	orat						
32	Manasi Hir	ige						