Problems based on mixing

Calculate the change in entropy when 21 g of nitrogen are mixed with 22 g of CO_{2} and 24 g of oxygen at $25^{\circ} \mathrm{C}$. [At. wt. $\mathrm{N}=14, \mathrm{O}=16, \mathrm{C}=12$].

Calcualate the change in entropy with 2 moles of nitrogen gas are mixed with 8 gm chlorine gas at $25^{\circ} \mathrm{C}$.
[Atomic wts. $\mathrm{N}=14, \mathrm{Cl}=35.5$]
Calculate the change in entropy when 6 g of N_{2} are mixed with $\left(5 \mathrm{~g} \mathrm{O}_{2}\right.$ at $2 \mathrm{O}^{\circ} \mathrm{C}[$ At. wts. $\mathrm{N}=14 \mathrm{O}=16]$.

Evaluate $\Delta \mathrm{S}_{\text {mix }}$ when 4 gm helium, 30 gm neon and 36 gm argon are mixed at $25^{\circ} \mathrm{C}$. [At. Wt. $\mathrm{He}=4, \mathrm{Ne}=20, \mathrm{Ar}=40$]

Calculate the entropy change of mixing when 16 gram of ' NO ' and 32 gram of ' O_{3} ' at 200 K .
[Given Atomic Weight : $\mathrm{N}=14, \mathrm{O}=16$.

Calculate the change in entropy when 21 gm of nitrogen are mixed with 22 gm of Co_{2} and 24 gm of oxygen at $25^{\circ} \mathrm{c}$.
[Given Atomic weight : $\mathrm{N}=14, \mathrm{O}=16, \mathrm{C}=12$]
Calculate $\Delta \mathrm{S}, \Delta \mathrm{G}$ and $\Delta \mathrm{H}$ when 20 g of methane is mixed with 30 g of ethane considering both of them to be ideal at $30^{\circ} \mathrm{c}$. comment on your answer.

Work done , reversible irreversible , adiabatic problems

89 of N_{2} is expanded reversibly from 1 lit to 10 lit at 300 K . Calculate $\Delta \mathrm{S}, \Delta \mathrm{H}$ and $\Delta \mathrm{G}$ (At. mass $\mathrm{N}=14$).

Three moles of hydrogen are compressed isothermally and reversibly from $60 \mathrm{dm}^{3}$ to $20 \mathrm{dm}^{3}$ and 8.22 KJ of work is done on it. Assuming ideal behaviour, calculate the temperature of the gas.

Calculate the work done during adiabatic reversible expansion of 0.02 m ar at $25^{\circ} \mathrm{c}$ expanded from 0.5 L to 1.0 L .
[Given : $\mathrm{Cv}_{1} \mathrm{~m}$ of $\mathrm{Ar}=12.48 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$]

Problems based on Colligative properties

By how much the freezing point of benzene $5.53^{\circ} \mathrm{C}$, be reduced if 10 g hexane added to 100 g benzene?
$\left(\Delta \mathrm{Hf}\right.$ for benzene $\left.=9.836 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$.
By how much the freezing point of benzene $5.53^{\circ} \mathrm{C}$, be reduced if 10 gm . hexane is added to 100 gm benzene?
$\left(\Delta \mathrm{H}_{\mathrm{f}}\right.$ for benzene $\left.=9.836 \mathrm{KJ} \mathrm{mole}^{-1}\right)$
[At.wt. C = 12

$$
\mathrm{H}=1] .
$$

When 5.25 g of a substance is dissolved in 565 g of benzene at $25^{\circ} \mathrm{C}$, the boiling point is raised by $0.625^{\circ} \mathrm{C}$. Evaluate the molecular weight of the substance. $\left[\mathrm{K}_{\mathrm{b}}=2.53 \mathrm{~K} \mathrm{Kg} \mathrm{mol}^{-1}\right]$.

Problems based on partial molar quantities

Estimate the molar solubility of oxygen in water at $25^{\circ} \mathrm{C}$ and partial pressure of 160 torr. (Henry's constant $\mathrm{K}=3.3 \times 10^{7}$ torr).

A water alcohol mixture is 40% in alcohol by mass, the density of water is $1 \mathrm{gram} / \mathrm{cc}$ and density of alcohol is $0.785 \mathrm{gram} / \mathrm{cc}$. Find the total volume of 1 kg mixture [Given : Partial molar volume of water $=17.5 \mathrm{cc}$ mole^{-1}, and partial molar volume of ethanol $\left.=55.0 \mathrm{cc} \mathrm{mole}^{-1}\right]$.

At $25^{\circ} \mathrm{c}$ the density of 50% by mass of ethanol-water mixture is 914 $\mathrm{kg} / \mathrm{m}^{3}$. Find the Partial molar volume of ethanol.
[Partial Molar volume of water $=17.4 \mathrm{~cm}^{3}$ mole $^{-1}$]

Problems based on Photoelectric effect

When lithium is irradiated with light of wavelength 300 nm electrons having kinetic energy $2.935 \times 10^{-19} \mathrm{~J}$ are ejected. Calculate the threshold frequency and work function of Lithium.

The velocity of electrons ejected from a metal surface when irradiated with 215 nm light is $0.70 \mathrm{Mms}^{-1}$. Estimate the work function of the metal in electron volts.

The work function of barium is 2.48 eV . If light of 400 nm is incident on a barium cathode. What is the maximum velocity of ejected electrons in eV ?

Calculate the kinetic energy of an electrons emitted from a potassium surface ($\phi=564 \mathrm{~nm}$). The irradiation wavelength is 410 nm .

The energy required for the ionisation of a certain atom is $3.44 \times 10^{-18} \mathrm{~J}$. The absorption of a photon of unknown wavelength ionises the atom and eject an electron with velocity $1.03 \times 10^{6} \mathrm{~ms}^{-1}$. Calculate the wavelength of incident radiation.

Calculate the velocity of ejected electrons from Barium Surface $\phi=2.48 \mathrm{ev}$. When light of 400 nm is irradiated on Barium cathode.

Calculate the velocity of an electron ejected from a sodium surface ($\phi=1.82 \mathrm{eV}$) when light having frequency $1.13 \times 10^{15} \mathrm{~Hz}$ is incident on it.

Problems based on debroglie hypothesis

An electron travels 2000 km in a ms. Calculate its de Broglie wavelength.
Calculate the de-Broglie wavelength of an oxygen molecule at $25^{\circ} \mathrm{C}$.
Calculate the de Broglie Wavelength of an electron moving at $\frac{1}{179}^{\text {th }}$ the speed of light.

Calculate linear momentum of a nanogram particle with de - Broglie wavelength of 700 nm . If the particle is located in a nonometer box, determine the uncertainty in its linear momentum measurement.

Problems based on Uncertainty principle

What is the uncertainty in the velocity of an electron if the uncertainty in it sposition is $1 \AA$?

What is the standard deviation in the velocity of an electron if the uncertainty in its position is 100 pm ?

The lifetime of an excited species is 2 ns . Determine the uncertainty in energy in SI units. How can the width of the spectral line be determined from this data?

What is the degeneracy of the level for which the total energy
i) $14 h^{2} / 8 m a^{2}$ and
ii) $21 h^{2} / 8 m a^{2}$

Find the degeneracy of the levels for which total energy of a particle in
3 d box is $\frac{86 h^{2}}{8 m a^{2}}$.

What is the degeneracy of the level for which the total energy
i) $14 \mathrm{~h}^{2} / 8 \mathrm{ma}^{2}$
ii) $\quad 17 \mathrm{~h}^{2} / 8 \mathrm{ma}^{2}$

When a particle of mass $9.1 \times 10^{-28} \mathrm{~g}$ in one dimensional box goes from $A=5$ to $n=2$ level, it emits a photon of frequency of $6 \times 10^{14} \mathrm{~Hz}$. Find the length of the box.

Calculate the transition energy when an electron in a box of length 500 pm undergoes a transition from $\mathrm{n}=1$ to $\mathrm{n}=2$.

Calculate the absorption band in cm^{-1} for hexatriene from the following data.
[C-C bond length $=154 \mathrm{pm}, \mathrm{C}=\mathrm{C}$ bond length $=135$ p.m., radius of $\mathrm{c}-$ atom $=77.0 \mathrm{pm}$.$] .$

Evaluate the energy of an electron in a molecule of 528 pm length in the first energy level.

Other Problems

Calculate the change in entropy when 10 g of ice at $0^{\circ} \mathrm{C}$ is added to 50 g of water at $40^{\circ} \mathrm{C}$ in an isolated system. The latent heat of fusion of ice is $334 \mathrm{KJ} \mathrm{g}^{-1}$ and the sp . heat of water is $4.18 \mathrm{~J} \mathrm{k}^{-1} \mathrm{~g}^{-1}$.

Calculate the number of photons emitted by a mW bulb emitting 700nm. radiation in one hour.

