

AFROJ M DANGE_DIGITAL ELECTRONICS 1

Logic Gates and Boolean Algebra

Logic Gates

Digital signal has two discrete levels or values 1 and 0, and are referred as HIGH (ON)

and LOW (OFF) states.

A transistor operates very reliably in the switching mode. So transistor is one of the main

building blocks of a digital circuit.

The simplest way to use a transistor is a switch, meaning that we operate it at either

saturation or cut-off.

When saturated, a transistor is like a closed switch, whereas cut-off is like an open

switch.

A diode can also be used as a switch. In forward bias condition, resistance of diode is

zero and it behaves like closed switch. On the other hand, under reverse bias, the

resistance is very high and no current can flow, which makes it as an open switch.

The logic gate has one or more inputs.

Depending upon the inputs it produces a HIGH (1) or LOW (0). A gate receives binary

input and produces output which depends upon the inputs and the function intended for.

Fig.: Block diagram of logic gate

For simplicity in designing and understanding of digital system, each gate has assigned

symbol.

There are many types of symbols depending on function they perform.

The most commonly used symbols are given in Table 1:

AFROJ M DANGE_DIGITAL ELECTRONICS 2

 Logic gates

Sr.

No.

Logic gate Function Symbol

1. Inverter NOT

2. AND AND

3. NAND NAND

4. OR OR

5. NOR NOR

6. Exclusive OR EX-OR

7. Exclusive
NOR

EX-NOR

Positive and Negative Logic

In a digital system there are two discrete levels HIGH (1) and LOW (0).

If the higher of the two voltages represents a 1 and lower voltage represents 0, the system

is called positive logic system.

On the other hand, if lower voltage represents a 1 and higher voltage represents 0 we

have negative logic system.

Suppose that +5V and 0V are our logic level voltages.

We will designate +5V as HIGH (1) and 0V as LOW (0).

So positive and negative logic can be defined as :

Positive logic Negative logic

HIGH = 1

LOW = 0

HIGH = 0

LOW = 1

AFROJ M DANGE_DIGITAL ELECTRONICS 3

 (a) Positive logic (b) Negative logic

Fig. : Digital signal representation

 From Fig.(a), + 5V will be considered as HIGH level in positive logic and LOW level

in negative logic system.

 Similarly, voltage level 0V will be considered as LOW in the positive logic system

and HIGH level in the negative logic system, as in Fig. (b).

Basic Logic Gates (Universal and Derived Gates)

In a digital system, there are only few basic operations performed irrespective of the

complexities of the system.

These operations may be required to be performed number of times in a digital computer

or digital control system.

The basic logic gates are AND, OR, NOT etc. These basic gates can be combined to

perform other important logic operations like NAND, NOR and EX-NOR gates. So these

are called as derived gates.

Any Boolean (or logic) expression can be realized by using the AND, OR and NOT

gates. NAND, NOR operations can be derived from it.

These operations have become very popular and are widely used because either NAND,

NOR gates are sufficient for the realization of any logical expression. Because of this

reason, NAND and NOR gates are known as universal gates.

1.NOT Gate

The NOT gate is also called inverter as it inverts the input signal.

The inverter (NOT circuit) performs a basic logic function called inversion or

complementation.

AFROJ M DANGE_DIGITAL ELECTRONICS 4

It is called NOT because its output is NOT the same as input.

The purpose of NOT or inverter is to change one logic level to the opposite level.

In terms of bits, it changes 1 to 0 and 0 to 1.

(a) (b)

Input A
Output Y =

–
A

0

1

1

0

(c) Truth table

Fig.1: NOT gate

Fig. 1. (a) and (b) shows standard symbols for NOT gate.

As shown in Fig. 1, NOT gate has one input A and one output Y.

Its logic expression is,

 Y = NOT A

 =
–
A

 and is read as "Y equals NOT A" or Y equals complement of A.

 If A = 0, Y = NOT 0 = 1

 On the other hand,

 if A = 1, Y = NOT 1 = 0

 The presence of small circle, known as the bubble, always denotes inversion in

digital circuits.

AFROJ M DANGE_DIGITAL ELECTRONICS 5

2.AND Gate

The AND gate performs logical multiplication, more commonly known as AND

function.

The AND gate is composed of two or more inputs and single output.

The output of AND gate is high (1) only when all the inputs are high (1).

A logic gate can be used as diode, transistor, FET or combination of these elements.

(a) Symbol

 The inputs of the two input AND gates are labelled as A and B and output is labelled

as Y.

(b) Simplified circuit with diode

Inputs Output

A B Y= A.B

0

0

1

1

0

1

0

1

0

0

0

1

(c) Truth table

AFROJ M DANGE_DIGITAL ELECTRONICS 6

Fig. 2

 The AND gate can be designed using diodes. Fig. 2 (b) shows two input AND gates

using diodes.

There are only four possible input cases.

Case I : A is low and B is low.

With this situation both diodes D1 and D2 are forward bias by supply voltage and will

conduct. Because of this the output voltage is ideally zero. This means Y is low.

 i.e. Y = 0

Case II : A is low and B is high since diode D1 is forward bias pulling the output down

to a low voltage.

The diode D2 is reversed bias. The output Y = 0.

Case III : A is high and B is low. The diode D2 is forward bias and pulling the output

down to a low voltage.

The diode D1 is reversed bias, therefore Y = 0.

Case IV : A is high and B is high with both inputs at + 5V. Both diodes are non-

conducting because the voltage across each is zero.

Therefore, current will not flow through R and output Y is at high (logic 1) i.e. Y = 1.

3. OR Gate

An OR gate performs logical addition, more commonly known as OR function. It has two

or more inputs and one output. The logic symbol of OR gate is shown in Fig. 3 (a).

(a) Symbol

The inputs of two input OR gates are labelled as A and B. Output is labelled as Y.

AFROJ M DANGE_DIGITAL ELECTRONICS 7

The operation of OR gate is such that a HIGH on the output is produced when any of the

inputs are HIGH.

Output is LOW only when all of the inputs are LOW.

 In certain situation, if we want a output HIGH, when one or more of its inputs is HIGH,

OR gate can be used.

(b) Diode circuit of OR gate

Inputs Output

A B Y = A + B

0

0

1

1

0

1

0

1

0

1

1

1

(c) Truth table

Fig. 3

 Let us assume input voltage 1 (High state) or + 5V and 0 (Low state) is 0 V.

 For different input combinations, we will have the following cases :

 Case I : A and B both LOW i.e. A = 0 and B = 0. In this case, both diodes D1 and D2

are non-conducting, therefore, Y output is LOW. i.e. Y = 0.

 Case II : A is LOW and B is HIGH i.e. A = 0 and B = 1.

AFROJ M DANGE_DIGITAL ELECTRONICS 8

The high B input voltage of the diode D2 will conduct as it is under forward bias

condition. The conducting current will flow through resistor RL and high voltage will

develop at the output. This will make Y = 1 (High logic). The diode D1 is reversed bias.

 Case III : A is HIGH and B is LOW i.e. A = 1 and B = 0.

The diode D1 will conduct and D2 is non-conducting. The conducting current in this

case also flows through resistor RL and HIGH voltage will develop at the output. This

will make Y = 1 (High logic).

 Case IV : A and B both are HIGH i.e. A = 1 and B = 1. Diodes D1 and D2 will

conduct and therefore output is at high logic level i.e. Y = 1.

Universal and Derived Gates

Any Boolean (or logic) expression can be realized by using the AND, OR and NOT gate

as discussed before.

From these three operations, two more operations have to be derived : the NAND and

NOR operations. These operations are very popular and are widely used.

NAND and NOR gates are known as universal gates because it can perform any

logical function of AND, OR and NOT gate. NAND or NOR gates are sufficient for

the realization of any logical expression.

AFROJ M DANGE_DIGITAL ELECTRONICS 9

Universal Gate (NAND/NOR)

Function Symbol NAND NOR

1. NOT

2. AND

3. OR

The NAND and NOR gates have universal property and can be used for performing

AND, OR and NOT functions, so an AND/OR/NOT logic circuit can be converted to

NAND/NOR logic.

NAND as NOT Gate

Fig. 4

 Y =
––––
A · A =

–
A

 A NOT gate can be obtained from NAND gate by connecting all the inputs

together.

NAND as AND Gate

AFROJ M DANGE_DIGITAL ELECTRONICS 10

Fig. 5

 The AND gate can be obtained by simply inverting output of NAND gate.

 NAND as OR Gate

 The OR gate can be designed by using NAND gate.

 Y = A + B

 Y =
=
A +

=
B

 Y =
––––––
A

–
B

 Therefore an OR gate operation can be obtained by NANDing
–
A and

–
B .

Y =
–––––
A ·

–
B = A + B

NOT NAND

OR gate using NAND gate

Fig. 6

AFROJ M DANGE_DIGITAL ELECTRONICS 11

 NOR as NOT Gate

Fig. 7

Two inputs of OR gate are connected together, it gives inverter of input signal i.e. NOT.

 NOR as AND Gate

 The AND gate can be designed by using NOR gate.

 Y = A·B

 Y =
=
A ·

=
B

 Y =
–––––––
A +

–
B

 Fig. 8

AFROJ M DANGE_DIGITAL ELECTRONICS 12

Boolean algebra

Boolean algebra is the mathematics of digital system.

Infact it is a convenient and systematic way of expressing and analyzing the operation of

logic circuits.

It is found that the knowledge of Boolean algebra is essential to study and analysis of

logic circuit.

A mathematical system for formulating logical statements with symbols, so that

problems can be written and solved like a ordinary algebra, was developed by the

Irish logician and mathematician George Boole and known as Boolean algebra.

Boolean algebra was introduced in 1854. Boole is one of the persons in a long historical

chain who were concerned with formalizing and mechanizing the process of logical

thinking.

Boolean algebra is a generalization of set algebra and the algebra of propositions and is a

tool for studying and applying logic.

It provides mathematical basis for expressing logic circuit functions, as well as analyzing

and designing of the digital system.

 Boolean Axioms

The Boolean axioms are the laws of Boolean algebra for addition, multiplication and

for the inversion.

They are known as axioms because they are the truth which can be verified for different

possibilities but cannot be proved.

There are different operators for Boolean algebra.

Boolean Operators:

 The operators in Boolean algebra are slightly different than conventional algebra for

the basic gates and the following operators are commonly used.

(i) Dot sign (·) : The dot sign () which is also expressed as (), indicates logical

product of two terms.

AFROJ M DANGE_DIGITAL ELECTRONICS 13

The logical product of two terms A and B is expressed as A·B (or A B)

and is read as "A AND B". The inputs A and B are said to be ANDed.

(ii) Plus sign (+) : The (+) sign indicates the logical sum of two terms.

For example, A + B represents logical sum of terms A and B and is read as

"A OR B". The inputs A and B are said to be ORed.

(iii) Overbar (–) : A sign of (–) indicates that the terms which are overbar, are to be

complemented.

For example,
–
A represents complementation of term A and is read as

"NOT A".

Boolean Addition and Multiplication:

Addition in Boolean algebra involves variables having values of either a binary 1 or a

binary 0.

Binary 1 will represent a HIGH level and binary 0 will represent a LOW level in Boolean

equations.

 The basic rules for Boolean addition are as follows :

 0 + 0 = 0

 0 + 1 = 1

 1 + 0 = 1

 1 + 1 = 1

Boolean addition is the same as the OR. Notice that, it differs from binary addition in

the case where two 1s are added.

Multiplication in Boolean algebra follows the same basic rules governing binary

multiplication.

 0 · 0 = 0

 0 · 1 = 0

 1 · 0 = 0

AFROJ M DANGE_DIGITAL ELECTRONICS 14

 1 · 1 = 1

 Boolean multiplication is the same as the AND.

Complementation in Boolean algebra is as follows :

–
0 = 1

–
1 = 0

It is same as NOT.

2.Boolean Algebra Rules and Laws

There are certain rules and laws in Boolean algebra.

The alphabets A, B, C and D can be used as variables having values 0 and 1.

Laws of Intersection :

 Law 1 : A · 1 = A

Fig. 2.1

 If a logic 1 is applied to one of the two inputs of the AND gate and signal A to the other input, the

output will be A.

 Law 2 : A · 0 = 0

Fig. 2.2

 If a logic 0 is applied to one of the two inputs of the AND gate and signal A to the other input, the

output will be logic 0.

Laws of Union :

 Law 3 : A + 1 = 1

Fig. 2.3

AFROJ M DANGE_DIGITAL ELECTRONICS 15

 If a logic 1 is applied to the two inputs of OR gate and signal A to the other input, the output will

be logic 1.

 Law 4 : A + 0 = A

Fig. 2.4

 If a logic 0 is applied to one of the two inputs of OR gate and A to the other input, the output will

be logic A.

Laws of Tautology:

 Law 5 : A · A = A

Fig. 2.5

 If the same signal A is applied to all the inputs of AND gate, the output will be same as the input.

 Law 6 : A + A = A

Fig. 2.6

 If the same signal A is applied to all the inputs of OR gate, the output will be same as input A.

Laws of Complement :

 Law 7 : A ·
–
A = 0

Fig. 2.7

 If a logic signal A and its complement
–
A is applied to an AND gate, the output will be logic 0.

 Law 8 : A +
–
A = 1

Fig. 2.8

 If a logic signal A and its complement
–
A is applied to an OR gate, the output will be 1.

AFROJ M DANGE_DIGITAL ELECTRONICS 16

Law of Double negation :

 Law 9 :
=
A = A

Fig. 2.9

 The complement of the complement of A is A.

Laws of Commutation :
 Law 10 : A · B = B · A

 The commutative law of multiplication states that order in which variables are ANDed makes no

difference at the output.

Fig. 2.10

 Law 11 : A + B = B + A

 This law states that 'the order in which the inputs are given to an OR gate makes no difference at

the output'.

Fig. 2.11

Laws of Association :

 Law 12 : The associative law of addition for three variables is stated as follows,

 (A + B) + C = A + (B + C)

 This law states that 'in the ORing of several variables, the result is same regardless of grouping of

variables'.

Fig. 2.12

AFROJ M DANGE_DIGITAL ELECTRONICS 17

Law 13 : The associative law of multiplication is stated as follows for three
variables.

 (A · B) · C = A · (B · C)

Fig. 2.13

Laws of Distribution :
 Law 14 : The distributive law for three variables is written as follows :

 A (B + C) = AB + AC

 This law states that 'ORing several variables and ANDing the result with a single variable is

equivalent to ANDing the single variable with each of several variables and then ORing the products'.

Fig. 2.14

 Law 15 : A + (B · C) = (A + B) · (A + C)

Fig. 2.15

 Proof : (A + B) · (A + C) = AA + AB + AC + BC

 = A (1 + B + C) + BC … (1)
 Though B and C have any value either 0 or 1,
 1 + B + C = 1
 Therefore equation (1) becomes = A · 1 + BC
 From law (1), A · 1 = A
 (A + B) (A + C) = A + BC

AFROJ M DANGE_DIGITAL ELECTRONICS 18

Laws of Absorption :

Law 16 : A + A · B = A

Fig. 2.16

 Proof : Consider A + A · B = A · (1 + B)

 = A · 1 .
.
. 1 + B = 1

 = A .
.
. A · 1 = A

 Law 17 : A · (A + B) = A

Fig. 2.17

 Proof : A · (A + B) = A · A + A · B

 = A + AB .
.
. A · A = A

 = A (1 + B)

 = A · 1 .
.
. 1 + B = 1

 = A .
.
. A · 1 = A

 Law 18 : A · B +
–
B = A +

–
B

Fig. 2.18

 Proof : A · B +
–
B = A · B +

–
B · 1 .

.
. –B · 1 =

–
B

 = A · B +
–
B · (A + 1) .

.
. A + 1 = 1

 = A · B +
–
BA +

–
B · 1

 = A · (B +
–
B) +

–
B .

.
.

–
B 1 =

–
B

 = A +
–
B .

.
. B +

–
B = 1

AFROJ M DANGE_DIGITAL ELECTRONICS 19

Law 19 : A · (
–
A + B) = A · B

Fig. 2.19

 Proof : A · (
–
A + B) = A

–
A + AB

 = 0 + AB .
.
. A ·

–
A = 0

 = A · B

Law 20 : A ·
–
B + B = A + B

Fig. 2.20

Proof : Consider A ·
–
B + B = A ·

–
B + B · 1 .

.
. B · 1 = B

 = A ·
–
B + B · (A + 1) .

.
. A + 1 = 1

 = A ·
–
B + B · A + B · 1

 = A (
–
B + B) + B

 = A · 1 + B .
.
. –B + B = 1

 = A + B .
.
. A · 1 = A

AFROJ M DANGE_DIGITAL ELECTRONICS 20

Table 2. : Boolean algebraic theorems

Law Classification Algebraic definition

1

2

Laws of intersection A · 1 = A

 A · 0 = 0

3

4

Laws of union A + 1 = 1

 A + 0 = A

5

6

Laws of tautology A · A = A

 A + A = A

7

8

Laws of complement
 A ·

–
A = 0

 A +
–
A = 1

9 Law of double negation

=
A = A

10

11

Laws of commutation A · B = B · A

 A + B = B + A

12

13

Laws of association (A + B) + C = A + (B + C)

 (A · B) · C = A · (B · C)

14

15

Laws of distribution A (B + C) = A · B + A · C

 A + (B · C) = (A + B) · (A + C)

16

17

18

19

20

Laws of absorption A + A · B = A

 A · (A + B) = A

 A · B +
–
B = A +

–
B

 A · (
–
A + B) = AB

 A ·
–
B + B = A + B

AFROJ M DANGE_DIGITAL ELECTRONICS 21

De Morgan's Theorems

 De Morgan, a logician and mathematician proposed two theorems which are important parts of

Boolean algebra.

 De Morgan's first theorem is,

––
AB =

–
A +

–
B

 The complement of product is equal to the sum of the complements. The complement of two

or more variables ANDed is the same as the OR of the complement of each individual variables.

Fig. 1

 It can also be constructed with AND, OR and NOT gate as follows :

Fig. 2

Table 3 : De Morgan's first theorem

Input Intermediate value Output

A B AB
–
A

–
B

––
A·B

–
A +

–
B

0

0

1

1

0

1

0

1

0

0

0

1

1

1

0

0

1

0

1

0

1

1

1

0

1

1

1

0

De Morgan's Second Theorem

 The complement of a sum is equal to the product of the complements. It can be

expressed as

––––
A + B =

–
A ·

–
B

Fig. 3

 Using AND, OR and NOT gate, the circuit can be drawn as

AFROJ M DANGE_DIGITAL ELECTRONICS 22

Fig. 4

Table 4 : De Morgan's second theorem

Input Intermediate value Output

A B A + B
–
A

–
B

––––
A + B

–
A ·

–
B

0

0

1

1

0

1

0

1

0

1

1

1

1

1

0

0

1

0

1

0

1

0

0

0

1

0

0

0

 Now consider the NAND operation of three variables.

––––
ABC =

–
A +

–
B +

–
C

 and
––––––––
A + B + C =

–
A ·

–
B ·

–
C

 The above results can be easily extended to any number of variables.

Applications of De Morgan's Theorems

 De Morgan's theorems can be used for simplifying logic function.

Example 1 : Simplify the following expressions.

Solution : (i)
––––––––––––––
A + B +

–
C =

––––––––––
A + B ·

––
C [..

.
––––––

–––––
A + B = A + B and

=
C = C]

 = A + B · C

 = (A + B) · C

 (ii)
–––––––––––
A + B +

–––
CD =

–––––––––––
A + B ·

––––––
CD = (

–
A + B) CD

 (iii)
–––––––––––––
AB +

–
A + AB =

––––––––––––––
A +

–
B +

–
A + AB

 =
–––––––––––
A +

–
B + AB .

.
. –A +

–
A =

–
A

 =
––––––––––
A + A +

–
B .

.
. AB +

–
B = A +

–
B

 =
–––––
1 +

–
B =

–
1 = 0

AFROJ M DANGE_DIGITAL ELECTRONICS 23

–––––––––––––
AB +

–
A + AB = 0

 (iv)
––––––––––––

(
–
A·B) (B·C) (C

–
D) =

––––
A·B +

–––
B·C +

–––
(C

–
D) =

–
A +

–
B +

–
B +

–
C +

–
C +

–
D

 = A +
–
B +

–
B +

–
C +

–
C + D .

.
. –

A = A and
–
D = D

 = A +
–
B +

–
C + D .

.
. –B +

–
B =

–
B and

–
C +

–
C =

–
C

–––––––––––––
(
–
A·B) (BC) (C

–
D) = A +

–
B +

–
C + D

 (v) y = (
–
A B) +(A

–
B)

 Using De Morgan's theorem

⎯⎯
A + B =

–
A

–
B

 y =
⎯⎯

(
–
A B) (A

–
B)

Simplification of Logic Equations using Laws of Boolean Algebra

 Many times it is essential to reduce number of gates required for designing a digital

circuit, reduce a particular expression to its simplest form, ultimately which reduces size

and price (cost) of circuit.

By applying basic laws, rules and theorems of Boolean algebra, it is possible to

implement practically.
 Following examples illustrate the technique.

Example 1 : Simplify the expression AB + A (B + C) + B (B + C) using Boolean algebra
techniques.
 Solution : Consider
 AB + A (B + C) + B (B + C) = AB + AB + AC + BB + BC

 = A (B + B) + AC + B (B + C) ... B · B = 1

 = AB + AC + B ... B + B = B, B (B + C) = B

 = AB + B + AC
 = B (A + 1) + AC

 = B · 1 + AC ... A + 1 = 1

 = B + AC
 AB + A (B + C) = B + AC

 The logic circuit will be

AFROJ M DANGE_DIGITAL ELECTRONICS 24

 Example 2 : Simplify the expression [A
–
B (C + BD) +

–
A

–
B] C using Boolean algebra

techniques.
 Solution : Consider

 [A
–
B (C + BD) +

–
A

–
B] C = (A

–
BC + A

–
BBD +

–
A

–
B) C

 = (A
–
BC + A · 0 · D +

–
A

–
B) C ...

–
B B = 0

 = (A
–
BC + 0 +

–
A

–
B) C

 = (A
–
BC +

–
A

–
B) C

 = A
–
BCC +

–
A

–
BC

 = A
–
BC +

–
A

–
BC ... C · C = C

 =
–
BC (A +

–
A)

 =
–
BC · (1) ... A +

–
A = 1

 =
–
BC

 [A
–
B (C + BD) +

–
A

–
B] C =

–
BC

 The logic circuit will be

 Example 3 : Using Boolean algebra techniques, simplify the following expressions as
much as possible : (i) A(A + B),

 (ii) A(
–
A + AB),

 (iii) BC +
–
BC,

 (iv) A(A +
–
AB).

 Solution : (i) A (A + B) = A·A + A·B

 = A + A·B ... A·A = A

 = A (1 + B)

 = A · (1) ... 1 + B = 1

 = A
 A (A + B) = A

AFROJ M DANGE_DIGITAL ELECTRONICS 25

 (ii) A (
–
A + AB) = A

–
A + A·AB

 = 0 + A·AB ... A
–
A = 0

 = AB ... A·A = A

 A (
–
A + AB) = AB

 (iii) BC +
–
BC = C (B +

–
B)

 = C · (1) ... B +
–
B = 1

 = C

 (iv) A (A +
–
AB) = A·A + A·

–
AB

 = A + A·
–
AB ... A·A = A

 = A + 0 ... A·
–
A = 0

 = A ... A + 0 = A

 Example 4 : Reduce the following Boolean expression and draw the logic diagram :

–
ABC

–
D + BC

–
D + B

–
C

–
D + B

–
CD

 Solution : Consider

–
ABC

–
D + BC

–
D + B

–
C

–
D + B

–
C D = BC

–
D (

–
A + 1) + B

–
C (

–
D + D)

(...
–
A + 1 = 1, D +

–
D = 1)

 = BC
–
D · (1) + B

–
C · (1) = BC

–
D + B

–
C = B (C

–
D +

–
C)

 = B (
–
DC +

–
C) (...

–
DC = C

–
D)

 = B (
–
D +

–
C) (...

–
DC +

–
C =

–
D +

–
C)

 The logic circuit will be

AFROJ M DANGE_DIGITAL ELECTRONICS 26

 Example 5 : Simplify the following equations using laws of Boolean algebra :

 (i) Y = ABCD + ABC + AB + A
–
B

 Solution : Consider

 ABCD + ABC + AB + A
–
B = ABC (D + 1) + A (B +

–
B)

 = ABC · (1) + A · (1) (... D + 1 = 1, B +
–
B = 1)

 = ABC + A

 Circuit for Y = ABCD + ABC + AB + A
–
B can be constructed as follows :

 Here four input AND and four input OR gate are used.

 (ii) Y =
–
A + AB + A

–
B

 Solution : Consider

–
A + AB + A

–
B =

–
A + A (B +

–
B)

 =
–
A + A (1) =

–
A + A = 1 (... B +

–
B = 1)

 Here three input OR gate is used.

 (iii) Y = AB +
–
AB + ABC

 Solution : Y = AB + ABC +
–
AB

 = AB (1 + C) +
–
AB

 = AB (1) +
–
A B = AB +

–
AB (... 1 + C = 1)

 = B (A +
–
A)

AFROJ M DANGE_DIGITAL ELECTRONICS 27

 = B (... A +
–
A = 1)

 Let us consider the following circuit to solve the given equation.

 (iv) A = AB + BC +
–
BA +

–
AB

 Solution : Y = AB +
–
AB + BC +

–
BA = B (A +

–
A) + BC +

–
BA

 = B + BC +
–
BA (... A +

–
A = 1)

 = B (1 + C) +
–
BA

 = B +
–
BA (... 1 + C = 1)

 Let us consider the following circuit to solve the given equation.

Boolean Expression in SOP and POS Form

 Boolean expressions can be used to build the logic circuit.

If we have the expression Y = A + B + C and asked to build a circuit that perform
this logic function, we can very easily see that there must be an OR gate having three
inputs A, B and C. The circuit can be realized using three input OR gate as shown in
Fig.below.

Fig.: Logic diagram for Boolean expression Y = A + B + C

AFROJ M DANGE_DIGITAL ELECTRONICS 28

It is found that the Boolean expression come in two forms.

All Boolean expressions can be converted into either of two standard forms; the sum of
product form or the product of sum forms.

It is found that this standardization makes the evaluation, simplification and
implementation of Boolean expressions much more systematic and easier.

Sum of Product (SOP) Form :

A product term consist of the product of multiplication of variables or their complements
(known as literal).

When two or more product terms are summed by Boolean addition, the resulting
expression is known as sum of product (SOP) form. The examples of SOP are,

 Y = AC + BC

 Y = AB + ABC

 Y = ABC + BCD + AB
–
D etc.

 The sum of product form is called minterm form in engineering texts and the product
of sum form is called the maximum term form by engineers, technicians and scientist.

 An SOP expression can contain a single variable term. In an SOP expression a single
overbar cannot extend over more than one variable, however more than one variable in a

term can have an overbar. Thus,

ABC is not valid but
–
A

–
B

–
C is valid in SOP.

 The set of variables contained in the expression in either complemented or
uncomplemented form is known as domain of a Boolean expression. For example, the

domain of the expression A
–
B + ABC is the set of variable A, B and C.

Implementation of an SOP Expression :

The sum of product (SOP) expression contains product of sum terms.

A product term is produced by an AND operation and the sum or addition of two or more
product terms is produced by an OR operation.

Therefore, an SOP expression is implemented by an AND-OR logic.

Consider the SOP expression y = AB + BC + CD, it can be implemented as shown in Fig.
below:

Fig.: SOP of Boolean expression Y = AB + BC + CD

AFROJ M DANGE_DIGITAL ELECTRONICS 29

The Product of Sum (POS) Form :

 A sum term consist of the sum i.e. Boolean addition of literals (variables or their
complements). When two or more sum terms are multiplied, the resulting expression is
known as product of sum (POS) form, for example,

 Y = (A + B) (B + C)

 Y = (
–
A + B) (A +

–
B + C)

 POS expression can contain a single variable term. In a POS expression, a single
overbar cannot extend over more than one variable, however more than one variable in a

term can have an overbar. For example, POS expression can have the term
–
A +

–
B +

–
C but

will not have
–––––––––
A + B + C .

Implementation of a POS Expression :

 Given Boolean expression, of the POS form can be implemented by ANDing the
outputs of two or more OR gates.

A sum term is produced by an OR operation and the product of two or more sum terms is
produced by an AND operation.

The expression Y = (A + B) (B + C) (C + D) can be implemented as shown in
Fig. POS form.

Fig.: POS form of Y = (A + B) (B + C) (C + D)

 Standard or Canonical SOP and POS forms : A logic expression is said to be in

the standard or canonical form.

If each SOP term consists of all the literals/variables in their complemented or

uncomplemented form, the standard SOP form is

 The Boolean expression is said to be in standard POS form, if all the terms in POS
consist of all the literals in their complemented or uncomplemented form. For example,

AFROJ M DANGE_DIGITAL ELECTRONICS 30

 Each individual term in the standard SOP form is called minterm.

 e.g. Consider,

 Each individual term in the standard POS form is called maxterm.

 e.g. Consider,

Conversion of SOP/POS Expression to its Standard SOP/POS
 Form

 The given Boolean expression can be converted to their corresponding SOP and POS
forms. As seen in the standard SOP form each product term consist of all the literals.

 e.g. Y = AB + A
–
B +

–
A

–
B is standard SOP

 but Y = AB + ABC + AB
–
C is not standard SOP

 The conversion of expression into standard SOP form is a three step process :

 (1) For each term find the missing literal,

 (2) Then AND the term with the term formed by ORing the missing literal and its
complement,

 (3) Simplify the obtained equation.

 e.g. Convert the expression

 Y = AB + A
–
C + BC in the standard SOP form.

 Solution : Given expression is

 Y = AB + A
–
C + BC

 Step 1 : Find the missing literal in each term.

AFROJ M DANGE_DIGITAL ELECTRONICS 31

 Step 2 : AND each term with its (Missing literal + Its complement).

 Y = AB (C +
–
C) + A

–
C (B +

–
B) + BC (A +

–
A)

 Note that C +
–
C = 1 then it does not changes the value of expression.

 Step 3 : Simplification of the expression.

 Y = AB (C +
–
C) + A

–
C (B +

–
B) + BC (A +

–
A)

 Y = ABC + AB
–
C + AB

–
C + A

–
B

–
C + ABC +

–
ABC

 = (ABC + ABC) + (AB
–
C + AB

–
C) + A

–
B

–
C +

–
ABC

 Since A + A = A

 Y = ABC + AB
–
C + A

–
B

–
C +

–
ABC

 Since in the above expression each term contain all the literals it is in the standard
SOP form.

Conversion to Standard POS Form

 In the standard POS form each sum term consists of all the literals in the
complemented or uncomplemented form e.g.

 Y = (
–
A + B) · (

–
A +

–
B) · (A +

–
B) is in the standard POS

 whereas, Y = (
–
A +

–
B) · (A + B + C) is in the non-standard POS form.

 The given POS expression can be converted into standard POS form using three
steps.

 Step 1 : For each term find the missing literal.

 Step 2 : Then OR each term with the term formed by ANDing the missing literal in
that term with its complement.

 Step 3 : Simplify the expression to obtain standard POS form.

 e.g. Convert the expression

Y = (A + B) · (A +
–
B) · (B +

–
C) into the standard POS forms.

 Solution : Find the missing literal in each term

 Step 1 : OR each term with missing literal and its complement.

AFROJ M DANGE_DIGITAL ELECTRONICS 32

 Y = (A + B + C
–
C) · (A +

–
B + C

–
C) · (B +

–
C + A

–
A)

 Step 2 : Simplify the expression

 Y = (A + B + C
–
C) · (A +

–
B + C

–
C) · (B +

–
C + A

–
A) (1)

 Let p = A + B, q = A +
–
B, r = B +

–
C,

 Y = (p + C
–
C) (q + C

–
C) (r + A

–
A) (2)

 Since A + BC = (A + B) (A + C)

 = (A + B + C) (A + B +
–
C) (A +

–
B + C) (A +

–
B +

–
C)

 (B +
–
C + A) (B +

–
C +

–
A)

 Y =(A + B + C) (A + B +
–
C) (A +

–
B + C) (A +

–
B +

–
C) (

–
A + B +

–
C)

 Since each term of above expression contains all the literals so the equation is
standard POS form.

 y = (
=
A = A)

 Karnaugh Map

 The Karnaugh map or K-map provides a systematic method for simplifying a Boolean
expression and can be used as visual display of fundamental products needed for a sum of
products solution.

 The K-map is composed of an arrangement of adjacent 'cells' each representing one
particular combination of variables in product form.

The K-map consists of 2n cells, where n is number of variables.

 For example, there are four combinations of the products of two variables A and B

and their complements
–
A

–
B ,

–
A B, A

–
B and AB. Therefore, the K-map must have four

cells, with each cell representing one of the variable combination.

 Advantages of K-map

 (i) As we have seen the laws of Boolean algebra, but it is difficult to apply these
laws when number of variables are large. In such a case, it makes easy by using K-map.

 (ii) Use of large number of laws of Boolean algebra increases the chances of error
because one have to remember all these laws and has to apply them at correct place. But
by using K-map it is not necessary to remember all the laws, according to circuit situation
K-map may apply. It provides easiest way to produce simplest Boolean expression with
minimum chances of error.

AFROJ M DANGE_DIGITAL ELECTRONICS 33

Format of a two variable K-map can be represented as follows:

 –
B B

–
A

–
B

–
A B

 –
A

A
–
B AB A

 (a) (b)
Fig.

 Variable combination is shown in Fig. (a) and actually how K-map can be arranged
with variables outside the cell is shown in Fig. (b).

 Extensions of the K-map to three and four variables are shown in Fig..

 –
C C –

C
–
D

–
C D CD C

–
D

 –
A

–
B

 –
A

–
B

 –
A B

 –
A B

 AB AB

A

–
B

A

–
B

 (a) Three variable map (23 = 8 cells) (b) Four variable map (24 = 16 cells)

Fig.

 Karnaugh maps can be used for five, six or more variables.

 We see how K-map can be drawn from the following Table

 Consider the Table:.

Table 2.4

A B C Y

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

1

0

0

0

1

1

 Output Y is taken by random selection of 1. First we draw the blank map.

AFROJ M DANGE_DIGITAL ELECTRONICS 34

 –
C C

–
A

–
B

–
A B

AB

A
–
B

Fig.

 The vertical column is labelled as
–
A

–
B ,

–
AB, AB and A

–
B .

 Output Y = 1 appears for 010, 110 and 111. The fundamental products for these input

conditions are
–
A B

–
C , AB

–
C , ABC (bar on variables where it is 0).

 Now, enter 1s for these products in K-map.

 –
C C

–
A

–
B

–
A B

1

AB 1 1

A
–
B

Fig.

 Enter 0s in the remaining spaces. Then final K-map becomes as in Fig..

 –
C C

–
A

–
B

0 0

–
A B

1 0

AB 1 1

A
–
B

0 0

Fig.

 Pairs, Quads and Octets

(a) Pair : The K map shown in Fig. 2.46 contains a pair of 1s that are horizontally
adjacent (next to each other).

AFROJ M DANGE_DIGITAL ELECTRONICS 35

 (a) (b)

Fig.: Horizontally adjacent ones

 The first 1 represents the product of
–
A B

–
C

–
D and second 1 the product of

–
A B

–
C D. As

we move from the first 1 to second 1, only one variable goes from complemented to

uncomplemented (
–
D to D), the other variables do not change the form (

–
A B

–
C remains

unchanged). In such case, we can eliminate the variable that changes the form.

 The sum of product (SOP) in which each individual term called as minterm represents

 Y =
–
A B

–
C

–
D +

–
A B

–
C D

 =
–
A B

–
C (

–
D + D) ...

–
D + D = D +

–
D

 =
–
A B

–
C (D +

–
D)

 =
–
A B

–
C ... D +

–
D = 1

 Y =
–
A B

–
C

 Adjacent 1s as shown in Fig. (a) complements are dropped out. For easy
identification we will encircle a pair of adjacent 1s as shown in Fig. (b).

 For the pair of horizontally or vertically adjacent 1s, we can eliminate the variable
that appears in both complemented and uncomplemented form.

 Examples of pairs for 3 variables

Fig. (c)

 B goes from complemented to uncomplemented form (
–
B to B).

 Y =
–
A

–
B

–
C +

–
A B

–
C

AFROJ M DANGE_DIGITAL ELECTRONICS 36

 =
–
A

–
C

 If more than one pair exist on a Karnaugh map, we can OR the simplified products to
get the Boolean equation.

 For example,

Fig. (d)

 For upper horizontal pair,

 Y =
–
A

–
B

–
C

–
D +

–
A

–
B

–
C D

 Y =
–
A

–
B

–
C

and for the lower vertical pair.

 Y = ABC
–
D + A

–
B C

–
D

 Y = AC
–
D

 The corresponding Boolean equation for this map is

 Y =
–
A

–
B

–
C + AC

–
D

 (b) Quad: A quad is a group of four 1s that are horizontally or vertically adjacent.
The 1s may be end to end or in the form of square.

 This group can be formed by combining top row, bottom row, left column, right
column, just like in pairing. Infact, quad eliminates two variables and their complements.

 Consider K-map for three variables.

Fig. 2.47

AFROJ M DANGE_DIGITAL ELECTRONICS 37

 Looking in K-map from Fig. 2.47, we find except for
–
C , other variables AB are

changed from complement to uncomplement form and/or vice versa. Therefore, output Y
becomes from Boolean algebra,

 Y =
–
A

–
B

–
C +

–
A B

–
C + AB

–
C + A

–
B

–
C

 Y =
–
A

–
C (

–
B + B) + A

–
C (B +

–
B)

 Y =
–
A

–
C (B +

–
B) + A

–
C (B +

–
B) (... B +

–
B = 1)

 Y =
–
A

–
C + A

–
C

 Y =
–
C (

–
A + A)

 Y =
–
C (...

–
A + A = 1)

 The other combinations of quads are

 (a)

 Y =
–
A B

–
C

–
D +

–
A B

–
C D +

–
A BCD +

–
A BC

–
D

 =
–
A B

–
C (

–
D + D) +

–
A BC (D +

–
D)

 =
–
A B

–
C +

–
A BC (... D +

–
D = 1)

 =
–
A B (

–
C + C) (...

–
C + C = 1)

 =
–
A B

 (b)

 Y = AB
–
C

–
D + AB

–
C D + A

–
B

–
C

–
D + A

–
B

–
C D

AFROJ M DANGE_DIGITAL ELECTRONICS 38

 = AB
–
C (

–
D + D) + A

–
B

–
C (

–
D + D)

 = AB
–
C + A

–
B

–
C

 = A
–
C (B +

–
B) (... B +

–
B = 1)

 = A
–
C

 (c)

 Y =
–
A B

–
C

–
D +

–
A BC

–
D + AB

–
C

–
D + ABC

–
D

 Y =
–
A B

–
D (

–
C + C) + AB

–
D (

–
C + C)

 Y =
–
A B

–
D + AB

–
D (...

–
C + C = 1)

 Y = B
–
D (

–
A + A)

 Y = B
–
D

 (c) Octet : This is a group of eight adjacent 1s. An octet like this eliminates three
variables and their complements. Octet can be considered as a pair of quads.

 (i) Consider the K-map shown in Fig. 2.51.

 The Boolean expression will be

 Y =
–
A B

–
C

–
D +

–
A B

–
C D +

–
A BCD +

–
A BC

–
D

 + AB
–
C

–
D + AB

–
C D + ABCD + ABC

–
D

 Y =
–
AB

–
C (

–
D + D) +

–
ABC (D +

–
D) + AB

–
C (

–
D + D) + ABC (D +

–
D)

 Y =
–
AB

–
C +

–
ABC + AB

–
C + ABC

AFROJ M DANGE_DIGITAL ELECTRONICS 39

 =
–
AB (

–
C + C) + AB (

–
C + C)

 =
–
AB + AB = B (

–
A + A) = B

 (ii) Consider the K-map shown in Fig.

 Y = AB
–
C

–
D + AB

–
C D + ABCD + ABC

–
D

 + A
–
B

–
C

–
D + A

–
B

–
C D + A

–
B CD + A

–
B C

–
D

 First eliminate D,

 Y =AB
–
C (

–
D + D) + ABC (D +

–
D) + A

–
B

–
C (

–
D + D) + A

–
BC (D +

–
D)

 = AB
–
C + ABC + A

–
B

–
C + A

–
B C

 Now eliminate C,

 Y = AB (
–
C + C) + A

–
B (

–
C + C)

 = AB + A
–
B

 Now eliminate B,

 Y = A (B +
–
B)

 Y = A

 In this way, three variables B, C, D and their complements dropout from the
corresponding product.

 Simplification using Karnaugh Map

 As we have seen, a pair eliminates one variable, a quad eliminates two variables and
their complements and an octate eliminates three variables and their complements.
Because of this, after drawing the Karnaugh map, encircle the octet first, the quads
second and pairs the last.

 For example,

AFROJ M DANGE_DIGITAL ELECTRONICS 40

 In Fig. above there is no octet, but there are two quads and one pair.

 Boolean algebra for pair

 Y1 =
–
A

–
B

–
CD +

–
A

–
BCD

 Y1 =
–
A

–
B D (

–
C + C)

 Y1 =
–
A

–
B D

 The lower quad represents the output

 Y2 = AB
–
C

–
D + AB

–
C D + A

–
B

–
C

–
D + A

–
B

–
C D

 Y2 = AB
–
C (

–
D + D) + A

–
B

–
C (

–
D + D)

 Y2 = AB
–
C + A

–
B

–
C

 Y2 = A
–
C (B +

–
B)

 Y2 = A
–
C

and the quad at right represents the output

 Y3 =
–
A

–
B C

–
D +

–
A BC

–
D + ABC

–
D + A

–
B C

–
D

 Y3 =
–
A C

–
D (

–
B + B) + AC

–
D (B +

–
B)

 Y3 =
–
A C

–
D + AC

–
D

 Y3 = C
–
D (

–
A + A)

 Y3 = C
–
D

 ORing these simplified products Y1, Y2, Y3, we get the Boolean equation

corresponding to the entire Karnaugh map.

 Y =
–
A

–
B D + A

–
C + C

–
D

 Overlapping Groups

AFROJ M DANGE_DIGITAL ELECTRONICS 41

 We can use the same 1 more than once.

 (a) (b)

 Fig. (a) shows how the same 1 can be grouped. The 1 representing the fundamental

product AB
–
C D is part of pair and part of octet.

 Output of lower octet is A and for pair is B
–
C D. Therefore simplified equation for

overlapping group is,

 Y = A + B
–
C D

 But it is valid to encircle 1 as shown in Fig. 2.54 (b). Then Y output becomes

 Y = A +
–
A B

–
C D

where A is output from octet and
–
A B

–
C D is from encircled 1.

Rolling the Map :

 Consider the following Fig. 2.55.

 (a) (b)

 The result from pair gives

 Y =
–
A B

–
C

–
D + AB

–
C

–
D +

–
A BC

–
D + ABC

–
D

 = B
–
C

–
D (

–
A + A) + BC

–
D (

–
A + A)

 = B
–
C

–
D + BC

–
D

 Visualise picking up the Karnaugh map and rolling it so that left side touches the
right side, two pairs actually form a quad. To show this, draw half circles around each
pair as shown in Fig. 2.52 (b). Then quad output gives,

AFROJ M DANGE_DIGITAL ELECTRONICS 42

 Y = B
–
D

 This is output of rolled quad. Therefore 1s on the edges of K-map can be grouped
with 1s on opposite edges.

 Example 1 : Draw a logic circuit and obtain truth table for the following expression

 Y = A + (
–––
B·C) +

–––
A·B+ C

 Solution : Consider the Fig. 2.56.

Fig.

Table: Truth table

A B C Y

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

1

1

1

1

1

1

1

1

 Using Boolean expression, we can reduce this circuit as follows.

 Consider Y = A +
–––
B·C +

–––
A·B + C

 Applying De Morgan's theorem,

 Y = A +
–
B +

–
C +

–
A +

–
B + C (...

–––
B·C =

–
B +

–
C)

 Y = (A +
–
A) +

–
B +

–
B + C +

–
C (

–––
A·B =

–
A +

–
B)

 = 1 +
–
B + 1

AFROJ M DANGE_DIGITAL ELECTRONICS 43

 Y = 1 +
–
B (... A +

–
A = 1)

 Y = 1 (... C +
–
C = 1)

 Thus, output Y is HIGH irrespective of any input H or L as it can be seen from truth
table also.

 Example 2. : Simplify the equation and then draw logic diagram.

 Y =
–
A

–
B

–
C +

–
A B

–
C + A

–
B

–
C + AB

–
C

 Solution : Consider Y =
–
A

–
B

–
C +

–
AB

–
C + A

–
B

–
C + AB

–
C

 Y =
–
A

–
C (

–
B + B) + A

–
C (

–
B + B)

 =
–
A

–
C (1) + A

–
C (1) (...

–
B + B = 1)

 =
–
A

–
C + A

–
C

 =
–
C (

–
A + A) (...

–
A + A = 1)

 =
–
C

 The logic circuit to solve the above equation is

 We can verify the result by considering the input conditions : A = 0, B = 0 and C = 1.

 The expected result is Y =
–
C i.e. Y = 0

 By applying the input, we get,

 Y =
–
A

–
B

–
C +

–
A B

–
C + A

–
B

–
C + AB

–
C

 =
–
0

–
0

–
1 +

–
0 0

–
1 + 0

–
0

–
1 + 0 0

–
1

 = 0 + 0 + 0 + 0

 = 0

 i.e. Y =
–
C

 Example 3 : Simplify the following equation and then draw logic diagram and truth
table.

 Y = A
–
BC + A

–
B

–
C + B

 Solution : Consider Y = A
–
BC + A

–
B

–
C + B

 Y = A
–
B (C +

–
C) + B

AFROJ M DANGE_DIGITAL ELECTRONICS 44

 = A
–
B (1) + B (... C +

–
C = 1)

 = A
–
B + B

 = A + B (... A
–
B + B = A + B)

 The logic circuit is,

Table: Truth table

Inputs Output

A B Y = A + B

0
0
1
1

0
1
0
1

0
1
1
1

 Example 4 : Simplify the following Boolean equation and then draw logic diagram
and truth table :

 Y = AB
–
C + ABC + BC

 Solution : Y = AB
–
C + ABC + BC

 Y = AB (
–
C + C) + BC (... C +

–
C = 1)

 Y = AB (1) + BC

 Y = AB + BC

 Y = B (A + C)

 The logic circuit is,

AFROJ M DANGE_DIGITAL ELECTRONICS 45

: Truth table

Inputs Output

A B C Y = B (A + C)

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

0

1

0

0

1

1

 Example 5 : Write the Boolean expression for the following logic diagram and give
its truth table.

 Solution : Consider the

Fig. 2.61

 The Boolean expression will be,

 Y = C (
––––––
A + B) · AC +

–––––
A + B

–––
AC)

 Y =
–
C + [(

–––––
A + B AC) + (

–––––
A + B)

–––
AC)]

–––––
A B =

–
A +

–
B

 Y =
–
C + [(A + B AC) + (

–––––
A + B

––
AC)]

=
A = A

 Y =
–
C + [(A + B AC) (

–––––
A + B

–−
AC)]

–––––
A + B =

–
A

–
B

 Y =
–
C + [(

–––––
A + B +

−−
AC) (

–––––
A + B +

−−−
AC)]

AFROJ M DANGE_DIGITAL ELECTRONICS 46

 Y =
–
C + [(

–––––
A + B +

−−
AC) (A + B + AC)]

 Y =
–
C + [(

–
A

–
B +

–
A +

–
C) (A (1 + C) + B)]

 Y =
–
C + [(

–
A (1 +

–
B) +

–
C) (A (1 + C) + B)]

 Y =
–
C + [(

–
A +

–
C) (A + B)]

 Y =
–
C + [(

–
AA +

–
AB + A

–
C +

–
CB)]

 Y =
–
C + [A (

–
A +

–
C) +

–
AB +

–
CB)]

 Y =
–
C + A

–
C +

–
AB +

–
CB)

 Y =
–
C (1 + A) +

–
AB +

–
CB =

–
C +

–
AB +

–
CB

 Circuit can be reduced and can be drawn as,

Truth table

Inputs Output

A B C Y =
–
A B +
–
C

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

1
0
1
1
1
0
1
0

AFROJ M DANGE_DIGITAL ELECTRONICS 47

Example 6 : Minimise the equation y =
–
A

–
BC +

–
ABC + A

–
BC + ABC using Boolean

Algebra or K-maps.

 Solution : (i) Using Boolean algebra : Rearranging the above

 y =
–
A

–
BC + A

–
BC +

–
ABC + ABC

 = (
–
A + A)

–
BC + (

–
A + A) BC (A +

–
A = 1)

 =
–
BC + BC = C (

–
B + B)

 y = C

 y =
–
A

–
BC +

–
ABC + A

–
BC + ABC

 (ii) Using K-map : Since equation contains three variables, the K-map will have 23
= 8 cells.

 y = C

 Example 7 : Draw the logic diagram for the expression y =
⎯⎯⎯⎯⎯

(
–
A B +

–
B

–
C).

 Solution :

 Example 8 : Simplify the following SOP expression using K-map.

Y = ABC +
–
A

–
B

–
C + AB

–
C +

–
ABC

 Solution : The K-map for the given equation is

AFROJ M DANGE_DIGITAL ELECTRONICS 48

 y = AB + BC +
–
A

–
B

–
C

Example 9 : Simplify the logic expression. y =
–
AB +

–
AB

–
C +

–
ABCD +

–
ABC

–
D using the

laws of Boolean algebra. Draw simplified logic diagram.

 Solution : Consider expression

 y =
–
AB +

–
AB

–
C +

–
ABCD +

–
ABC

–
D

 =
–
AB (1 +

–
C) +

–
ABC (D +

–
D) (1 +

–
C = 1, D +

–
D = 1)

 =
–
AB +

–
ABC

 =
–
AB (1 + C)

 =
–
AB (1 + C = 1)

: Logic diagram

 Example 10 : Minimize the following logical expression using K-maps.

y =
–
A

–
BC +

–
A

–
B

–
C + AB

–
C +

–
AB

–
C +

–
ABC

 Solution : Consider expression y =
–
A

–
BC +

–
A

–
B

–
C + AB

–
C +

–
ABC

 Since expression has three variables so K-map will have 23 = 8 cells.

 y =
–
A + B

–
C

AFROJ M DANGE_DIGITAL ELECTRONICS 49

 Example 11 : Convert the following SOP expression into standard SOP form :

 Y = AB + AC + B
–
C

 Solution : Given expression is

 Y = AB + AC + B
–
C

 Step 1 : Find the missing literal in each term

Y = AB + AC + B
–
C

missing

literal is

C

missing

literal is

B

missing

literal is

A

 Step 2 : And each term with its (missing literal + its complement)

 Y = AB (C +
–
C) + AC (B +

–
B) + B

–
C (A +

–
A)

 Since C +
–
C = 1, the value of expression does not change as

 Y = ABC + AB
–
C + ABC + A

–
BC + AB

–
C +

–
AB

–
C

 = ABC + ABC + AB
–
C + AB

–
C + A

–
BC +

–
AB

–
C (A + A = A)

 = ABC + AB
–
C + A

–
BC +

–
AB

–
C

 Since in the above expression each term contains all the literals it is in the standard
SOP form.

 Example 12 : Simplify the following expression using K-map :

 Y =
–
AB

–
C +

–
A

–
BC +

–
ABC + ABC

 Solution : Given expression contains three literals. So the K-map will have 23 = 8
cells.

 y =
–
AC +

–
AB + BC

 Example 13 : Simply the following using Boolean algebra.

–
A

–
BC + (A + B +

–
C) +

–
A

–
B

–
CD.

 Solution : Y =
–
A

–
BC +

–
A

–
B

=
C +

–
A

–
B

–
CD Using

⎯⎯⎯
A + BC =

–
A

–
B

–
C

 =
–
A

–
BC +

–
A

–
B C +

–
A

–
B

–
CD Using

=
A = A

 =
–
A

–
BC +

–
A

–
B

–
CD (A + A = A)

 Y =
–
A

–
B (C +

–
CD)

