SOME SAMPLE QUESTION

- 1. What is the radix used in the case of decimal, binary, octal and hexadecimal?
- 2. Write a note on BCD code.
- 3. Distinguish between binary code from BCD code.
- 4. What is a gray code? What are its main characteristics?
- 5. What is alphanumeric code?
- 6. Write notes on:
 - (i) ASCII code
 - (ii) EBCDIC code
- 7. What is difference between binary and BCD number system?
- 8. Explain gray code system with suitable example.
- 9. Convert the following binary numbers into decimal, octal and hexadecimal.
 - (a) (i) 1101, (ii) 110010, (iii) 10101010,
 - (iv) 11111111, (v) 11011011, (vi) 111000
 - b) (i) 1101.11, (ii) 1010.001, (iii) 1001.111.
- 10. Convert the following decimal numbers into binary, octal and hexadecimal.
 - (a) (i) 95, (ii) 123, (iii) 221, (iv) 252, (v) 529, (vi) 445.
 - (b) (i) 33.87, (ii) 89.85, (iii) 107.23.
- 11. Convert the following octal numbers into decimal, binary and hexadecimal.
 - (a) (i) 11, (ii) 82, (iii) 105, (iv) 187, (v) 256, (vi) 519.
 - (b) (i) 18.19, (ii) 53.35, (iii) 128.85.
- 12. Convert the following hexadecimal numbers into decimal, binary and octal.
 - (a) (i) 1E, (ii) ABC, (iii) F2, (iv) A99, (v) 23C, (vi) C92.
 - (b) (i) AE.35, (ii) 98.B2, (iii) C1.77.
- 13. Convert the following numbers in BCD code.
 - (i) 72, (ii) 365, (iii) 593
- 14. Convert the following numbers to gray code.
 - (i) 01001, (ii) 101101, (iii) 10110110.
- 15. Solve the following
 - (i) $(77)_{10} = (?)_{8}$, (ii) $(99)_{10} = (?)_{16}$, (iii) $(1011101) = (?)_{16}$
 - (iv) $(FA)_{16} = (?)_{10}$
- 16. What is positive and negative logic level? Explain with ideal pulse.
- 17. What is a BCD code? Convert decimal number (14)₁₀ to BCD and to binary.
- 18. What is gray code, write gray code for decimal 14.
- 19. Convert the following: (i) $(2003)_{10} = (...)_{16}$, (ii) $(0.8)_{10} = (...)_2$.
- 20. What is a weighted number system? Give any example of such a system.
- 21. Which logic gates are known as universal gates? Draw their symbols.
- 22. (i) $(27)_{10} = (?)_{BCD}$
 - (ii) $(396)_{10} = (?)_{Excess-3}$
 - (iii) $(1001)_2 = (?)_{Gray}$
 - (iv) $(1001)_{Gray} = (?)_{Binary}$
- 23. Perform the following:

- (i) $(23.85)_{10} = (?)_2$
- (ii) $(E8D6)_{16} = (?)_8$
- (iii) $(-12)_{10} = (?)_2$
- $(1111\ 1010)_2 + (1000\ 0111)_2 = (?)_2$ (iv)
- 24. Convert $(123.746)_{10} = (?)_8$.
- 25. What is positive and negative logic level?
- 26. Convert decimal number 37.2 into binary number.
- 27. Convert $(E4)_{16} = (?)_8$.
- 28. Perform the following conversions:
 - (i) $(954.61)_{10} = (?)_{BCD}$
 - $(153)_8 = (?)_{16}$ (ii)
 - $(1011)_2 = (?)_{16}$ (iii)
 - $(121)_{10} = (?)_{\text{Excess-3}}$ (iv)
- 29. Do the following:
 - (i) $(11101.011)_2 = (?)_{10}$
 - (ii) $(359)_{10} = (?)_8$
 - $(iii)(37.12)_8 = (?)_2$
 - $(iv)(2AB)_{16} = (?)_2$
- 30. List any two number systems. Write their corresponding bases.
- 31. Perform the following conversions:
 - (i) $(36)_{10} = (?)_{\text{Excess-3}}$
 - (ii) $(110111)_2 = (?)_{Gray}$
 - (iii) $(3F8B)_{16} = (?)_2$
 - (iv) $(759)_{10} = (?)_{BCD}$
- 32. Convert (168)₁₀ into octal and hex.
- 33. What is the radix used in the case of binary and hexadecimal?
- 34. Convert (8.5625)₁₀ to binary.
- 35. Convert (143)₁₀ into binary and hexadecimal.
- 36. Write a short note on ASCII and BCD codes.
- 37. Convert Binary to gray: 10110, 11011.
- 38. Perform the following:
 - (i) $(10110)_2 = (?)_{10}$ (ii) $(F0B6)_{16} = (?)_2$

 - (iii) $(589)_{10} = (?)_{BCD}$
 - (iv) $(123)_{10} = (?)_{Excess-3}$.
- 39. Perform the following:
 - (i) $(1101)_{Gray} = (?)_{Binary}$.
 - (ii) $(1000)_{Binary} = (?)_{Gray}$.
 - (iii) $(291)_{10} = (?)_{Excess-3}$.
 - (iv) $(97)_{10} = (?)_{BCD}$.
- 40. Perform the following:
 - (i) $(11011)_2 = (?)_{10}$

- (ii) $(9806)_{10} = (?)_{16}$
- (iii) $(F8A)_{16} = (?)_2$
- (iv) $(481)_{10} = (?)_2$

41.Perform the following conversions:

- (i) $(0111)_G = (?)_{Binary}$
- (ii) $(1100)_2 = (?)_{Grav}$
- (iii) $(32)_{10} = (?)_{Excess-3}$
- (iv) $(183)_{10} = (?)_{BCD}$.

42.Perform the following:

- (i) $(28.47)_{10} = (?)_2$
- (ii) $(11010.010)_2 = (?)_{10}$
- (iii) $(43.4)_{10} = (?)_{16}$
- (iv) $(A2.2)_{16} = (?)_{10}$
- 43. State various laws of Boolean algebra.
- 44. State and verify De Morgan's 1st and 2nd theorems.
- 45. Explain procedure for converting a logic circuit into NAND logic.
 - 46. Explain how logic circuit can be converted to NOR logic circuit.
 - 47. What is K-map? Where is it used? What are its advantages? Explain 3 variable K-map with suitable example.
 - 47. Draw logic symbols and truth tables for NAND, NOR, EX-OR and NOT gate.
 - 48. Simplify following equations using laws of Boolean algebra :

(i)
$$Y = AB + BC + \overline{B} A + \overline{A} B$$
, (ii) $Y = ABCD + ABC + AB + A\overline{B}$

(iii)
$$Y = \overline{A} + AB + A\overline{B}$$

(iv)
$$Y = AB + \overline{A}B + ABC$$

- 49. Write a note on logic families.
- 50. Why NAND gate is called as universal building block? Explain it with suitable example.
- 51. Use only NOR gate to build NAND, OR and EX-OR gates.
- 52. What are the logic families? Give their different characteristics.
- 53. Design all basic gates using NOR gate.
- 54. Reduce the following Boolean expressions:

(i)
$$\underline{\overline{A \cdot (A + C)}}$$
, (ii) $(\overline{C} + B)$ (C + B), (iii) $AC\overline{D} + \overline{A} C\overline{D}$

- (iv) $A\overline{B} + ABC + A(B + A\overline{B})$
- 55. Minimise the following expressions by using K-map:
 - (i) $ABC + \overline{A} B\overline{C} + B$, (ii) $\overline{A} B\overline{C} D + AB\overline{C} D + ABC\overline{D} + A\overline{B} C\overline{D}$
- 56. Draw a logic circuit and obtain truth table for following expression :

$$Y = AC\overline{D} + \overline{A}BC$$

57. Convert the following expressions into their standard SOP and POS forms:

$$(a) Y = AB + AC + BC$$

