SOME SAMPLE QUESTION

1. What is the radix used in the case of decimal, binary, octal and hexadecimal ?
2. Write a note on BCD code.
3. Distinguish between binary code from BCD code.
4. What is a gray code ? What are its main characteristics?
5. What is alphanumeric code?
6. Write notes on :
(i) ASCII code
(ii) EBCDIC code
7. What is difference between binary and BCD number system ?
8. Explain gray code system with suitable example.
9. Convert the following binary numbers into decimal, octal and hexadecimal.
(a) (i) 1101 , (ii) 110010 , (iii) 10101010 ,
(iv) 11111111, (v) 11011011 , (vi) 111000
(b) (i) 1101.11, (ii) 1010.001, (iii) 1001.111.
10. Convert the following decimal numbers into binary, octal and hexadecimal.
(a) (i) 95 , (ii) 123 , (iii) 221, (iv) 252, (v) 529 , (vi) 445.
(b) (i) 33.87, (ii) 89.85, (iii) 107.23.
11. Convert the following octal numbers into decimal, binary and hexadecimal.
(a) (i) 11 , (ii) 82 , (iii) 105 , (iv) 187 , (v) 256 , (vi) 519.
(b) (i) 18.19 , (ii) 53.35 , (iii) 128.85 .
12. Convert the following hexadecimal numbers into decimal, binary and octal.
(a) (i) 1E, (ii) ABC, (iii) F2, (iv) A99, (v) 23C, (vi) C92.
(b) (i) AE .35 , (ii) $98 . \mathrm{B} 2$, (iii) C 1.77 .
13. Convert the following numbers in BCD code.
(i) 72 , (ii) 365 , (iii) 593
14. Convert the following numbers to gray code.
(i) 01001, (ii) 101101, (iii) 10110110.
15. Solve the following
(i) $(77) 10=(?) 8$,
(ii) $(99) 10=(?) 16, \quad$ (iii) $(1011101)=(?) 16$
(iv) $(\mathrm{FA}) 16=(?) 10$
16. What is positive and negative logic level ? Explain with ideal pulse.
17. What is a BCD code ? Convert decimal number (14) $)_{10}$ to BCD and to binary.
18. What is gray code, write gray code for decimal 14.
19. Convert the following : (i) $(2003)_{10}=(\ldots)_{16}$, (ii) $(0.8)_{10}=(\ldots)_{2}$.
20. What is a weighted number system ? Give any example of such a system.
21. Which logic gates are known as universal gates? Draw their symbols.
22. (i) $(27)_{10}=(\text { ? })_{\mathrm{BCD}}$
(ii) $\quad(396)_{10}=(\text { ? })_{\text {Excess-3 }}$
(iii) $(1001)_{2}=(\text { ? })_{\text {Gray }}$
(iv) $(1001)_{\text {Gray }}=(?)_{\text {Binary }}$
23. Perform the following :
(i) $\quad(23.85)_{10}=(?)_{2}$
(ii) $(\text { E8D6 })_{16}=(?)_{8}$
(iii) $\quad(-12)_{10}=(?)_{2}$
(iv) $(11111010)_{2}+(10000111)_{2}=(?)_{2}$
24. Convert $(123.746)_{10}=(?)_{8}$.
25. What is positive and negative logic level?
26. Convert decimal number 37.2 into binary number.
27. Convert $(\mathrm{E} 4)_{16}=(?)_{8}$.
28. Perform the following conversions :
(i) $(954.61)_{10}=(?)_{\mathrm{BCD}}$
(ii) $(153)_{8}=(?)_{16}$
(iii) $(1011)_{2}=(?)_{16}$
(iv) $\quad(121)_{10}=(\text { ? })_{\text {Excess-3 }}$
29. Do the following :
(i) $(11101.011)_{2}=(?)_{10}$
(ii) $(359)_{10}=(?)_{8}$
(iii) $(37.12)_{8}=(?)_{2}$
(iv) $(2 \mathrm{AB})_{16}=(?)_{2}$
30. List any two number systems. Write their corresponding bases.
31. Perform the following conversions :
(i) $(36)_{10}=(\text { ? })_{\text {Excess-3 }}$
(ii) $(110111)_{2}=(\text { ? })_{\text {Gray }}$
(iii) $(3 \mathrm{~F} 8 \mathrm{~B})_{16}=(\text { ? })_{2}$
(iv) $(759)_{10}=(\text { ? })_{\mathrm{BCD}}$
32. Convert (168) $)_{10}$ into octal and hex.
33. What is the radix used in the case of binary and hexadecimal ?
34. Convert (8.5625) ${ }_{10}$ to binary.
35. Convert (143$)_{10}$ into binary and hexadecimal.
36. Write a short note on ASCII and BCD codes.
37. Convert Binary to gray : 10110, 11011.
38. Perform the following :
(i) $(10110)_{2}=(?)_{10}$
(ii) $(\text { F0B6 })_{16}=(?)_{2}$
(iii) $(589)_{10}=(\text { ? })_{\mathrm{BCD}}$
(iv) $(123)_{10}=(\text { ? })_{\text {Excess-3 }}$.
39. Perform the following :
(i) $(1101)_{\text {Gray }}=(?)_{\text {Binary }}$.
(ii) $(1000)_{\text {Binary }}=(?)_{\text {Gray }}$.
(iii) $(291)_{10}=(\text { ? })_{\text {Excess- } 3 .}$
(iv) $(97)_{10}=(?)_{\text {всD }}$.
40. Perform the following :
(i) $(11011)_{2}=(?)_{10}$
(ii) $(9806)_{10}=(?)_{16}$
(iii) $(\mathrm{F} 8 \mathrm{~A})_{16}=(?)_{2}$
(iv) $(481)_{10}=(?)_{2}$
41.Perform the following conversions :
(i) $(0111)_{\mathrm{G}}=(\text { ? })_{\text {Binary }}$
(ii) $(1100)_{2}=(\text { ? })_{\text {Gray }}$
(iii) $(32)_{10}=(\text { ? })_{\text {Excess-3 }}$
(iv) $(183)_{10}=(\text { ? })_{\mathrm{BCD}}$.
42.Perform the following :
(i) $(28.47)_{10}=(?)_{2}$
(ii) $(11010.010)_{2}=(?)_{10}$
(iii) $(43.4)_{10}=(?)_{16}$
(iv) $(\mathrm{A} 2.2)_{16}=(?)_{10}$
41. State various laws of Boolean algebra.
42. State and verify De Morgan's $1^{\text {st }}$ and $2^{\text {nd }}$ theorems.
43. Explain procedure for converting a logic circuit into NAND logic.
44. Explain how logic circuit can be converted to NOR logic circuit.
45. What is K-map? Where is it used? What are its advantages? Explain 3 variable

K-map with suitable example.
47. Draw logic symbols and truth tables for NAND, NOR, EX-OR and NOT gate.
48. Simplify following equations using laws of Boolean algebra:

$$
\mathrm{Y}=\mathrm{AB}+\mathrm{BC}+\overline{\mathrm{B}} \mathrm{~A}+\overline{\mathrm{A}} \mathrm{~B}, \text { (ii) } \mathrm{Y}=\mathrm{ABCD}+\mathrm{ABC}+\mathrm{AB}+\mathrm{A} \overline{\mathrm{~B}}
$$

(iii) $\mathrm{Y}=\overline{\mathrm{A}}+\mathrm{AB}+\mathrm{A} \overline{\mathrm{B}}$
(iv) $\mathrm{Y}=\mathrm{AB}+\overline{\mathrm{A} B}$

ABC
49. Write a note on logic families.
50. Why NAND gate is called as universal building block ? Explain it with suitable example.
51. Use only NOR gate to build NAND, OR and EX-OR gates.
52. What are the logic families? Give their different characteristics.
53. Design all basic gates using NOR gate.
54. Reduce the following Boolean expressions :
(i) $\overline{\mathrm{A} \cdot(\mathrm{A}+\mathrm{C})}$, (ii) $(\overline{\mathrm{C}}+\mathrm{B})(\mathrm{C}+\mathrm{B})$, (iii) $\mathrm{AC} \overline{\mathrm{D}}+\overline{\mathrm{A}} \mathrm{C} \overline{\mathrm{D}}$
(iv) $A \bar{B}+A B C+A(B+A \bar{B})$
55. Minimise the following expressions by using K-map :
(i) $\mathrm{ABC}+\overline{\mathrm{A}} \mathrm{B} \overline{\mathrm{C}}+\mathrm{B}$, (ii) $\overline{\mathrm{A}} \mathrm{B} \overline{\mathrm{C}} \mathrm{D}+\mathrm{AB} \overline{\mathrm{C}} \mathrm{D}+\mathrm{ABC} \overline{\mathrm{D}}+\mathrm{A} \overline{\mathrm{B}} \mathrm{C} \overline{\mathrm{D}}$
56. Draw a logic circuit and obtain truth table for following expression :

$$
\mathrm{Y}=\mathrm{AC} \overline{\mathrm{D}}+\overline{\mathrm{A}} \mathrm{BC}
$$

57. Convert the following expressions into their standard SOP and POS forms :
(a)

$$
\mathrm{Y}=\mathrm{AB}+\mathrm{AC}+\mathrm{BC}
$$

(b)
(c)
$\mathrm{Y}=(\mathrm{A}+\mathrm{B})(\overline{\mathrm{B}}+\mathrm{C})$
$\mathrm{Y}=\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{ABC}$

