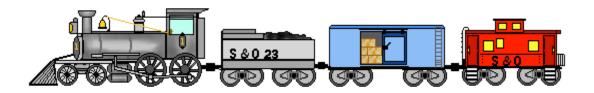
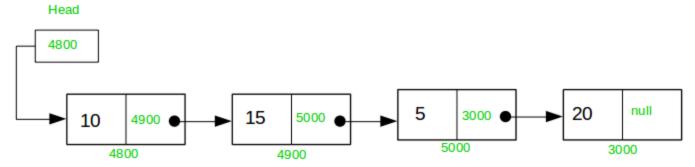

Chapter 2.

LINKED LIST

Introduction


Defination

- "Linked List is order collection of data in which each element (node) contains the data and link to its successor."
- A node contains two fields
 - 1. data
 - 2. pointer which contains the address o the next node



Node

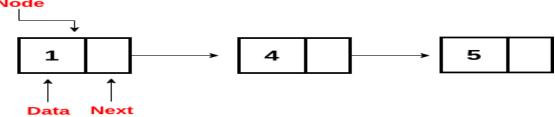
Real Life Example

Singly Linked list

Advantage of Link List

- ➤ Linked List is Dynamic data **Structure** .
- ➤ Linked List can grow and shrink during run time.
- ➤ Insertion and Deletion Operations are Easier.
- Efficient **Memory** Utilization, i.e no need to preallocate **memory**.
- ➤ Many complex application can be easily carried out with link list

Disadvantage of Link List


- More memory is required
- Nodes traversal is difficult in linked list.
- In linked list each node contains a pointer and it requires extra memory for itself.

Operation on Linked List

- ➤ **Insertion** Adds an element at the beginning of the list.
- ➤ **Deletion** Deletes an element at the beginning of the list.
- ➤ **Display** Displays the complete list.
- ➤ Search Searches an element using the given key.
- ➤ **Delete** Deletes an element using the given key.

Types of Linked List

1. Simple Linked List – Item navigation is forward only.

2. Doubly Linked List – Items can be navigated forward and backward.

Doubly Linked List

3. Circular Linked List

• A circular linked list is either a singly or doubly linked list in which there are no *NULL* values.

Representation of structure of linked List

```
struct node
{
    int data;
    struct node * next;
};
struct node *head;
```