
JAVA PROGRAMMING

Chapter 1

Introduction to Java
 Chaskar R. R.

Introduction

 Java is an object-oriented, class-based, concurrent,
secured and general-purpose computer-programming
language.

Java was developed by Sun Microsystems (which is now
the subsidiary of Oracle) in 1995

James Gosling is known as the father of Java.

Before Java, its name was Oak.

https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/java-oops-concepts

Application

 Desktop Applications such as acrobat reader, media
player, antivirus, etc.

 Web Applications such as irctc.co.in, javatpoint.com,
etc.

 Enterprise Applications such as banking applications.

 Mobile

 Embedded System

 Smart Card

 Robotics

 Games, et

Types of Java Applications

 1) Standalone Application

 2) Web Application

 3) Enterprise Application

 4) Mobile Application

JVM

 JVM (Java Virtual Machine) is an abstract machine

 The JVM performs the following main tasks:

1. Loads code

2. Verifies code

3. Executes code

4. Provides runtime environment

Features of Java
 Simple

 Object-Oriented

 Portable

 Platform independent

 Secured

 Robust

 Architecture neutral

 Interpreted

 High Performance

 Multithreaded

 Distributed

 Dynamic

C++ vs Java
 Comparison

Index

C++ Java

Platform-
independent

C++ is platform-dependent. Java is platform-independent.

Mainly used for C++ is mainly used for system
programming.

Java is mainly used for application
programming. It is widely used in
window, web-based, enterprise and
mobile applications.

Design Goal C++ was designed for systems and
applications programming. It was an
extension of C programming
language.

Java was designed and created as an
interpreter for printing systems but
later extended as a support network
computing. It was designed with a goal
of being easy to use and accessible to a
broader audience.

Goto C++ supports the goto statement. Java doesn't support the goto statement.

https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/cpp-goto-statement

Multiple
inheritance

C++ supports multiple
inheritance.

Java doesn't support
multiple inheritance
through class. It can be
achieved by interfaces
in java.

Operator
Overloading

C++ supports operator
overloading.

Java doesn't support
operator overloading.

Pointers C++ supports pointers. You
can write pointer program in
C++.

Java supports pointer
internally. However, you
can't write the pointer
program in java. It
means java has
restricted pointer
support in java.

https://www.javatpoint.com/interface-in-java
https://www.javatpoint.com/interface-in-java
https://www.javatpoint.com/cpp-overloading
https://www.javatpoint.com/cpp-overloading
https://www.javatpoint.com/cpp-pointers

First Java Program

class Simple

{

 public static void main(String args[])

 {

 System.out.println("Hello Java");

 }

}

To compile: javac Simple.java

To execute: java Simple

 class keyword is used to declare a class in java.

 public keyword is an access modifier which represents
visibility. It means it is visible to all.

 static is a keyword. If we declare any method as static, it is
known as the static method. The core advantage of the static
method is that there is no need to create an object to invoke the
static method. The main method is executed by the JVM, so it
doesn't require to create an object to invoke the main method.
So it saves memory.

 void is the return type of the method. It means it doesn't return
any value.

 main represents the starting point of the program.

 String[] args is used for command line argument.

 System.out.println() is used to print statement. Here, System
is a class, out is the object of PrintStream class, println() is the
method of PrintStream class.

Data Types in Java
Data types specify the different sizes and values that can
be stored in the variable.

 Primitive data types: The primitive data types
include boolean, char, byte, short, int, long, float and
double.

 Non-primitive data types: The non-primitive data
types include Classes, Interfaces, and Arrays.

https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/interface-in-java
https://www.javatpoint.com/array-in-java

Java Variables
 A variable is a container which holds the value while

the Java program is executed.

 Eg. int data=50;

Types of Variables

 local variable:- A variable declared inside the body of
the method is called local variable.

 instance variable:- A variable declared inside the
class but outside the body of the method, is called
instance variable. It is not declared as static.

https://www.javatpoint.com/simple-program-of-java
https://www.javatpoint.com/simple-program-of-java
https://www.javatpoint.com/static-keyword-in-java

static variable:- A variable which is declared as static is
called static variable. It cannot be local

Eg.

class A

{

int data=50; //instance variable

static int m=100; //static variable

void method()

{

int n=90; //local variable

}

} //end of class

Operators in Java
 Operator in Java is a symbol which is used to perform

operations. For example: +, -, *, / etc.

https://www.javatpoint.com/java-tutorial

Operator

Type

Category Precedence

Unary postfix expr++ expr--

prefix ++expr --expr +expr -expr ~ !

Arithmetic multiplicative * / %

additive + -

Shift shift << >> >>>

Relational comparison < > <= >= instanceof

equality == !=

Bitwise bitwise AND &

bitwise exclusive OR ^

bitwise inclusive OR |

Logical logical AND &&

logical OR ||

Ternary ternary ? :

Assignmen
t

assignment = += -= *= /= %= &= ^= |= <<= >>=
>>>=

Java Unary Operator
 The Java unary operators require only one operand.

class OperatorExample

{

public static void main(String args[])

{

int x=10;

System.out.println(x++);

System.out.println(++x);

System.out.println(x--);

System.out.println(--x);

}

}

Java Keywords

Java keywords are also known as reserved words.

Keywords are particular words which acts as a key to a
code

Control Statements
Java If-else Statement

The Java if statement is used to test the condition. It
checks boolean condition: true or false.

 if statement

 if-else statement

 if-else-if ladder

 nested if statement

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/boolean-keyword-in-java

if Statement

The Java if statement tests the condition. It executes the if
block if condition is true.
SYNTAX

if(condition)

{

//code to be executed

}

EXAMPLE

public class IfExample {

public static void main(String[] args)

{

 int age=20;

 if(age>18)

{

 System.out.print("Age is greater than 18");

 } } }

 if-else Statement
The Java if-else statement also tests the condition. It executes the if
block if condition is true otherwise else block is executed.

SYNTAX

if(condition)

{

code if condition is true

}

else

{

code if condition is false

}

EXAMPLE

public class IfElseExample
{
public static void main(String[] args)
 {
 int number=13;
 if(number%2==0)
 {
 System.out.println("even number");
 }
else
 {
 System.out.println("odd number");
 } } }

Switch Statement
The Java switch statement executes one statement from
multiple conditions.

SYNTAX

switch(expression)

{

case value1:

 break;

case value2:

 break;

default:

 code to be executed if all cases are not matched;

}

EXAMPLE

public class SwitchExample
{
public static void main(String[] args)
{
 int number=20;
 switch(number)
{
 case 10: System.out.println("10");
 break;
 case 20: System.out.println("20");
 break;
 case 30: System.out.println("30");
 break;
 default:System.out.println("Not in 10, 20 or 30");

} } }

do-while Loop

The Java do-while loop is used to iterate a part of the
program several times.

The Java do-while loop is executed at least once because
condition is checked after loop body.

SYNTAX

Do

{

//code to be executed

}while(condition);

EXAMPLE

public class DoWhileExample

{

public static void main(String[] args)

{

 int i=1;

 do

 {

 System.out.println(i);

 i++;

 }

while(i<=10);

}

}

Array

Java provides a data structure, the array, which stores a
fixed-size sequential collection of elements of the same
type.

Syntax

dataType[] arrayRefVar;

Types of Array

 Single Dimensional Array

 Multidimensional Array

EXAMPLE
class Testarray
{
public static void main(String args[])
{
int a[]=new int[5]; //declaration and instantiation
a[0]=10; //initialization
a[1]=20;
a[2]=70;
a[3]=40;
a[4]=50;
 //traversing array
for(int i=0;i<a.length;i++)//length is the property of array
System.out.println(a[i]);
}}

O/P=10,20,70,40,50

Multidimensional Array

In such case, data is stored in row and column based
index

Syntax

dataType []arrayRefVar[];

Example
class Testarray3{

public static void main(String args[])

{

int arr[][]={{1,2,3},{2,4,5},{4,4,5}};

for(int i=0;i<3;i++)

{

 for(int j=0;j<3;j++)

{

 System.out.print(arr[i][j]+" ");

 }

 System.out.println();

}

}}

Vector

Vector is like the dynamic array which can grow or
shrink its size. Unlike array, we can store n-number of
elements in it as there is no size limit.

Java String
In Java, string is basically an object that represents
sequence of char values.

char[] ch={‘m','a',‘n',‘c',‘h',‘a',‘r'};

String s=new String(ch);

Or

String s=“manchar";

https://www.javatpoint.com/java-tutorial

String class methods
No. Method Description

1 char charAt(int index) returns char value for the
particular index

2 int length() returns string length

3 String toLowerCase() returns a string in lowercase

4 static String format(Locale l, String format, Object...

args)
returns formatted string with
given locale.

5 String substring(int beginIndex) returns substring for given
begin index.

6 String substring(int beginIndex, int endIndex) returns substring for given
begin index and end index.

https://www.javatpoint.com/java-string-charat
https://www.javatpoint.com/java-string-charat
https://www.javatpoint.com/java-string-charat
https://www.javatpoint.com/java-string-charat
https://www.javatpoint.com/java-string-charat
https://www.javatpoint.com/java-string-charat
https://www.javatpoint.com/java-string-length
https://www.javatpoint.com/java-string-tolowercase
https://www.javatpoint.com/java-string-tolowercase
https://www.javatpoint.com/java-string-tolowercase
https://www.javatpoint.com/java-string-format
https://www.javatpoint.com/java-string-format
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-substring

7 boolean isEmpty() checks if string is empty.

8 String concat(String str) concatenates the specified
string.

9 String replace(char old, char new) replaces all occurrences of the
specified char value.

10 String toUpperCase() returns a string in uppercase.

https://www.javatpoint.com/java-string-isempty
https://www.javatpoint.com/java-string-isempty
https://www.javatpoint.com/java-string-isempty
https://www.javatpoint.com/java-string-isempty
https://www.javatpoint.com/java-string-concat
https://www.javatpoint.com/java-string-concat
https://www.javatpoint.com/java-string-concat
https://www.javatpoint.com/java-string-concat
https://www.javatpoint.com/java-string-concat
https://www.javatpoint.com/java-string-replace
https://www.javatpoint.com/java-string-touppercase
https://www.javatpoint.com/java-string-touppercase
https://www.javatpoint.com/java-string-touppercase

StringBuffer class
 Java StringBuffer class is used to create mutable

(modifiable) string. The StringBuffer class in java is
same as String class except it is mutable i.e. it can be
changed.

METHOD

1)append(String s)

Is used to append the specified string with this string.

2) insert(int offset, String s)

is used to insert the specified string with this string at
the specified position.

3) Replace(int startIndex, int endIndex, String str)

is used to replace the string from specified startIndex
and endIndex.

