
JAVA PROGRAMMING
Chapter 3

Collection
 Chaskar R. R.

Introduction

❏ The Collection in Java is a framework that provides an

architecture to store and manipulate the group of objects.

❏ Java Collections can achieve all the operations that you

perform on a data such as searching, sorting, insertion,

manipulation, and deletion.

List Interface

❏ List interface is the child interface of Collection interface.

❏ It inhibits a list type data structure in which we can store the

ordered collection of objects.

❏ It can have duplicate values.

❏ List interface is implemented by the classes ArrayList,

LinkedList, Vector, and Stack.

❏ List <data-type> list1= new ArrayList();

❏ List <data-type> list2 = new LinkedList();

ArrayList

The ArrayList class implements the List interface.

 It uses a dynamic array to store the duplicate element of different

data types.

The ArrayList class maintains the insertion order and is non-

synchronized.

E.g.

ArrayList<String> list=new ArrayList<String>();//Creating

arraylist

list.add("Ravi");//Adding object in arraylist

list.add("Vijay");

LinkedList

LinkedList implements the Collection interface.

 It uses a doubly linked list internally to store the elements.

 It can store the duplicate elements.

 It maintains the insertion order and is not synchronized.

E.g.

LinkedList<String> al=new LinkedList<String>();

al.add("Ravi");

al.add("Vijay");

 VECTOR
Vector uses a dynamic array to store the data elements.

 It is similar to ArrayList.

 However, It is synchronized and contains many methods that are not

the part of Collection framework.

E.g.

Vector<String> v=new Vector<String>();

v.add("Ayush");

v.add("Amit");

Advantages

Vector is synchronized.

Vector contain many legacy method that are not part of the collection framework.

Interface
Iterator interface provides the facility of iterating the elements in

a forward direction only.

METHOD OF COLLECTION INTERFACE

1. public boolean add(E e)

It is used to insert an element in this collection.

2. public boolean addAll(Collection<? extends E> c)

It is used to insert the specified collection elements in the

invoking collection.

3. public boolean remove(Object element)

It is used to delete an element from the collection.

 public boolean removeAll(Collection<?> c)

It is used to delete all the elements of the specified collection

from the invoking collection.

5. public int size()

It returns the total number of elements in the collection.

6. public void clear()

It removes total number of elements from collection.

set Interface
 Set Interface in Java is present in java.util package.

 It extends the Collection interface.

 It represents the unordered set of elements which doesn't

allow us to store the duplicate items.

 We can store at most one null value in Set.

 Set is implemented by HashSet, LinkedHashSet, and TreeSet.

1. Set<data-type> s1 = new HashSet<data-type>();

2. Set<data-type> s2 = new LinkedHashSet<data-type>();

3. Set<data-type> s3 = new TreeSet<data-type>();

Working with Maps
A map contains values on the basis of key, i.e. key and value pair.

 Each key and value pair is known as an entry.

 A Map contains unique keys.

A Map is useful if you have to search, update or delete elements

on the basis of a key.

Java HashMap
⚫ Java HashMap class implements the Map interface which

allows us to store key and value pair, where keys should be

unique.

⚫ If you try to insert the duplicate key, it will replace the

element of the corresponding key.

⚫ It is easy to perform operations using the key index like

updation, deletion, etc.

⚫ HashMap class is found in the java.util package.

Constructor

1.HashMap() :- It is used to construct a default

HashMap.

2. HashMap(int capacity) :- It is used to initializes the

capacity of the hash map to the given integer value,

capacity.

3. HashMap(int capacity, float loadFactor) :- It is used

to initialize both the capacity and load factor of the hash

map by using its arguments

Methods
⚫ void clear():- It is used to remove all of the

mappings from this map.
⚫ boolean isEmpty():- It is used to return true if this

map contains no ke:- y-value mappings.
⚫ Object clone():- It is used to return a shallow copy

of this HashMap instance: the keys and values
themselves are not cloned.

⚫ Set entrySet():- It is used to return a collection view
of the mappings contained in this map.

⚫ Set keySet():- It is used to return a set view of the
keys contained in this map.

Java TreeMap class

 Java TreeMap contains values based on the key. It

implements the NavigableMap interface and extends

AbstractMap class.

 Java TreeMap contains only unique elements.

 Java TreeMap cannot have a null key but can have multiple

null values.

 Java TreeMap is non synchronized.

 Java TreeMap maintains ascending order.

 public class TreeMap<K,V> extends AbstractMap<K,V>

implements NavigableMap<K,V>, Cloneable, Serializable

Constructor

1. TreeMap()

It is used to construct an empty tree map that will be sorted

using the natural order of its key.

1. TreeMap(Comparator<? super K> comparator)

It is used to construct an empty tree-based map that will be

sorted using the comparator comp.

Methods

 void clear():- It removes all the key-value pairs from a map.

 Object clone():- It returns a shallow copy of TreeMap

instance.

 K firstKey():- It is used to return the first (lowest) key

currently in this sorted map.

 K lastKey():- It is used to return the last (highest) key

currently in the sorted map.

 V remove(Object key):- It removes the key-value pair of the

specified key from the map.

