
JAVA PROGRAMMING
Chapter 4

File and Exception Handling
 Chaskar R. R.

Definition
The Exception Handling in Java is one of the powerful
mechanism to handle the runtime errors so that
normal flow of the application can be maintained.

Types of Exceptions

1. Checked Exception

2. Unchecked Exception

3. Error

1) Checked Exception

⚫ The classes which directly inherit Throwable class except
RuntimeException and Error are known as checked
exceptions.

⚫ Checked exceptions are checked at compile-time.

e.g. IOException, SQLException

2) Unchecked Exception

 The classes which inherit RuntimeException are known as
unchecked exceptions

 Unchecked exceptions are not checked at compile-time, but
they are checked at runtime.

e.g. ArithmeticException, NullPointerException,
ArrayIndexOutOfBoundsException.

3) Error

Error is irrecoverable.

e.g. OutOfMemoryError, AssertionError etc.

Java Exception Keywords
 try

The "try" keyword is used to specify a block where we

should place exception code. The try block must be

followed by either catch or finally. It means, we can't use

try block alone.

 catch

The "catch" block is used to handle the exception. It must

be preceded by try block which means we can't use catch

block alone. It can be followed by finally block later.

 finally

The "finally" block is used to execute the important
code of the program. It is executed whether an
exception is handled or not.

 Throw

The "throw" keyword is used to throw an exception.

 throws

The "throws" keyword is used to declare exceptions. It
doesn't throw an exception. It specifies that there may
occur an exception in the method. It is always used
with method signature.

E.g.
public class JavaExceptionExample
{
 public static void main(String args[])
 {
 try
 {
 int data=100/0; //code that may raise exception

 }
 catch(ArithmeticException e)
 {
 system.out.println(e);
 }
system.out.println("rest of the code..."); //rest code of the program

 }
}

O/P- java.lang.ArithmeticException: / by zero

 rest of the code...

Common Scenarios of Java Exceptions

1) int a=50/0;//ArithmeticException

2) string s=null;

 system.out.println(s.length()); //NullPointerException

3) string s="abc";

 int i=Integer.parseInt(s); //NumberFormatException

4) int a[]=new int[5];

 a[10]=50; //ArrayIndexOutOfBoundsException

try block

 Java try block is used to enclose the code that might throw an
exception. It must be used within the method.

 Java try block must be followed by either catch or finally
block.

Syntax

Try
{
 }

catch(Exception_class_Name ref)//code that may throw an exception
{
 }

Java catch block

 Java catch block is used to handle the Exception by
declaring the type of exception within the
parameter.

 he catch block must be used after the try block only.

 You can use multiple catch block with a single try
block.

Java Multi-catch block
⚫ A try block can be followed by one or more catch

blocks.
⚫ Each catch block must contain a different exception

handler.
 Program-

public class MultipleCatchBlock

 {

 public static void main(String[] args)

{

 try{

 int a[]=new int[5];

 a[5]=30/0;

 }

 catch(ArithmeticException e)

 {

 System.out.println("Arithmetic Exception oc

curs");

 }

catch(ArrayIndexOutOfBoundsException e)

 {

System.out.println("ArrayIndexOutOfBounds

Exception occurs");

 }

 catch(Exception e)

 {

System.out.println("Parent Exception occurs");

 }

 System.out.println("rest of the code");

 }

}

Nested try block
⚫ The try block within a try block is known as nested try

block in java
Syntax:
....
try
{
 statement 1;
 statement 2;
 try
 {
 statement 1;
 statement 2;
 }
 catch(Exception e)
 {
 }
}
catch(Exception e)
{
}
....

throws keyword

 The Java throws keyword is used to declare an
exception.

 It gives an information to the programmer that there
may occur an exception so it is better for the
programmer to provide the exception handling code
so that normal flow can be maintained.

SYNTAX

return_type method_name() throws exception_class_
name

{

//method code

}

Java finally block

 Java finally block is a block that is used to execute
important code such as closing connection, stream
etc.

 Java finally block is always executed whether
exception is handled or not.

 Java finally block follows try or catch block.

Program
class TestFinallyBlock
{
 public static void main(String args[])
{
 try
 {
 int data=25/5;
 System.out.println(data);
 }
 catch(ArithmeticException e)
{
System.out.println(e);
}
 finally
{
 System.out.println("finally block is always executed");
}
 System.out.println("rest of the code...");
 }
}

INPUT OUTPUT STREAM

Input Stream
 Java application uses an input stream to read data

from a source

 It may be a file, an array, peripheral device or socket.

METHOD

 public int available():- returns an estimate of the
number of bytes that can be read from the current
input stream.

 public void close():- is used to close the current
input stream.

 public abstract int read():- reads the next byte of
data from the input stream. It returns -1 at the end of
the file.

Program
package com.javatpoint;
import java.io.FileInputStream;
public class DataStreamExample
{
 public static void main(String args[])
{
 try
{
 FileInputStream fin=new FileInputStream("D:\\testout.txt");
 int i=0;
 while((i=fin.read())!=-1)
{
 System.out.print((char)i);
 }
 fin.close();
 }
catch(Exception e)
{
System.out.println(e);
} }
 }

Output Stream

 Java application uses an output stream to write data
to a destination

 It may be a file, an array, peripheral device or socket.
METHOD
 public void close() :- is used to close the current

output stream.
 public void write(int):- is used to write a byte to the

current output stream.
 public void flush():- flushes the current output

stream.
 public void write(byte[]):- is used to write an array of

byte to the current output stream.

Program:-

import java.io.FileOutputStream;

public class FileOutputStreamExample

 {

 public static void main(String args[])

{

 try

 {

 FileOutputStream fout=new FileOutputStream("D:\\testout.txt");

 fout.write(65);

 fout.close();

 System.out.println("success...");

 }

catch(Exception e)

{

System.out.println(e);

} }

}

Java FileReader Class

 Java FileReader class is used to read data from the
file.

SYNTAX

public class FileReader extends InputStreamReader

CONSTRUCTOR

 FileReader(String file):- It gets filename in string. It
opens the given file in read mode. If file doesn't
exist, it throws FileNotFoundException.

 FileReader(File file):- It gets filename in file instance.
It opens the given file in read mode. If file doesn't
exist, it throws FileNotFoundException.

https://www.javatpoint.com/java-string
https://www.javatpoint.com/java-file-class

METHOD

 int read():- It is used to return a character in ASCII
form. It returns -1 at the end of file.

 void close():- It is used to close the FileReader class.

